2,933 research outputs found

    Simulation of the Melting Behavior of the UO2-Zircaloy Fuel Cladding System by Laser Heating

    Get PDF
    The current research focuses on laser melting and successive analysis of laboratory-scale uranium dioxide nuclear fuel samples in direct contact with Zircaloy-4 cladding. The goal was to characterize the melted and refrozen interfaces, in particular, observing local changes of the melting point and interdiffusion of fuel and cladding materials under inert gas (Ar), in the presence of hydrogen (Ar + 6% H2) or in air. Results obtained by laser heating UO2 pellets clad in a Zircaloy ring were interpreted in light of reference tests performed on pellets in which UO2 and zirconium were blended in a series of given compositions. The sample composition was analyzed by scanning electron microscopy to verify the occurrence of diffusion and segregation phenomena during the laser-heating cycles. Laser-melting experiments were performed on pellets of uranium dioxide clad in Zircaloy-4 rings to simulate the configuration of a light water reactor fuel rod. Under inert gas, the material interdiffusion resulted in consistent melting point depression (of up to 200 K below the melting point of pure UO2) at the interface between the fuel and the cladding. Experiments carried out in the presence of H2 displayed a more limited effect on the melting temperature, but they resulted in a remarkable embrittlement of the whole structure, with large fragmentation of the Zircaloy cladding. This was probably due to the formation of brittle and highly volatile Zr hydrides. The observed melting point decrease was even more pronounced (up to over 400 K) under air in uranium-rich samples, due to the change in the stoichiometry of UO2 in UO2+x

    In-flight calibration of the INTEGRAL/IBIS mask

    Full text link
    Since the release of the INTEGRAL Offline Scientific Analysis (OSA) software version 9.0, the ghost busters module has been introduced in the INTEGRAL/IBIS imaging procedure, leading to an improvement of the sensitivity around bright sources up to a factor of 7. This module excludes in the deconvolution process the IBIS/ISGRI detector pixels corresponding to the projection of a bright source through mask elements affected by some defects. These defects are most likely associated with screws and glue fixing the IBIS mask to its support. Following these major improvements introduced in OSA 9, a second order correction is still required to further remove the residual noise, now at a level of 0.2-1% of the brightest source in the field of view. In order to improve our knowledge of the IBIS mask transparency, a calibration campaign has been carried out during 2010-2012. We present here the analysis of these data, together with archival observations of the Crab and Cyg X-1, that allowed us to build a composite image of the mask defects and to investigate the origin of the residual noise in the IBIS/ISGRI images. Thanks to this study, we were able to point out a simple modification of the ISGRI analysis software that allows to significantly improve the quality of the images in which bright sources are detected at the edge of the field of view. Moreover, a refinement of the area excluded by the ghost busters module is considered, and preliminary results show improvements to be further tested. Finally, this study indicates further directions to be investigated for improving the ISGRI sensitivity, such as taking into account the thickness of the screws in the mask model or studying the possible discrepancy between the modeled and actual mask element bridges.Comment: accepted for publication in the proceedings of "An INTEGRAL view of the high-energy sky (the first 10 years)" 9th INTEGRAL Workshop, October 15-19, 2012, Paris, France, in Proceedings of Science (INTEGRAL 2012), Eds. A. Goldwurm, F. Lebrun and C. Winkler, (http://pos.sissa.it/cgi-bin/reader/conf.cgi?confid=176), id 154; 6 pages, 4 figures, see the PoS website for the full resolution versio
    • …
    corecore