10 research outputs found

    Epitaxial layers of 2122 BCSCO superconductor thin films having single crystalline structure

    Get PDF
    A substantially single phase, single crystalline, highly epitaxial film of Bi.sub.2 CaSr.sub.2 Cu.sub.2 O.sub.8 superconductor which has a T.sub.c (zero resistance) of 83K is provided on a lattice-matched substrate with no intergrowth. This film is produced by a Liquid Phase Epitaxy method which includes the steps of forming a dilute supercooled molten solution of a single phase superconducting mixture of oxides of Bi, Ca, Sr, and Cu having an atomic ratio of about 2:1:2:2 in a nonreactive flux such as KCl, introducing the substrate, e.g., NdGaO.sub.3, into the molten solution at 850.degree. C., cooling the solution from 850.degree. C. to 830.degree. C. to grow the film and rapidly cooling the substrate to room temperature to maintain the desired single phase, single crystalline film structure

    Optimization of growth conditions of Bi₂CaSr₂Cu₂O₈₊x̲ superconducting films on NdGaO₃ substrates by LPE technique and their characterization

    Full text link
    Due to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to [email protected], referencing the URI of the item.Includes bibliographical references.Not availabl

    Method and system for forming SbSI thin films

    Full text link
    A method for forming SbSI thin films is formed. In the first step of the method, a substrate (14) is provided. Next a buffer layer (16) is formed on the substrate (14). Then, a SbSI source (12) is provided. The SbSI source (12) and buffer layer (16) with substrate (14) are placed in an ampoule (10). The ampoule is heated in a two-zone furnace (11). This causes the SbSI source (12) to form a vapor which reacts with the buffer layer (14) to form a thin film of SbSI.U

    Method for forming SbSI thin films

    Full text link
    A method for forming SbSI thin films is formed. In the first step of the method, a substrate (14) is provided. Next a buffer layer (16) is formed on the substrate (14). Then, a SbSI source (12) is provided. The SbSI source (12) and buffer layer (16) with substrate (14) are placed in an ampoule (10). The ampoule is heated in a two-zone furnace (11). This causes the SbSI source (12) to form a vapor which reacts with the buffer layer (14) to form a thin film of SbSI.U

    Method and system for forming SbSI thin films

    Full text link
    A method for forming SbSI thin films is formed. In the first step of the method, a substrate (14) is provided. Next a buffer layer (16) is formed on the substrate (14). Then, a SbSI source (12) is provided. The SbSI source (12) and buffer layer (16) with substrate (14) are placed in an ampoule (10). The ampoule is heated in a two-zone furnace (11). This causes the SbSI source (12) to form a vapor which reacts with the buffer layer (14) to form a thin film of SbSI.U

    So reduktivne note v vinu hudič ali angel varuh?

    Full text link
    A method for forming SbSI thin films is formed. In the first step of the method, a substrate (14) is provided. Next a buffer layer (16) is formed on the substrate (14). Then, a SbSI source (12) is provided. The SbSI source (12) and buffer layer (16) with substrate (14) are placed in an ampoule (10). The ampoule is heated in a two-zone furnace (11). This causes the SbSI source (12) to form a vapor which reacts with the buffer layer (14) to form a thin film of SbSI.U

    Method for forming SbSI thin films

    Full text link
    A method for forming SbSI thin films is formed. In the first step of the method, a substrate (14) is provided. Next a buffer layer (16) is formed on the substrate (14). Then, a SbSI source (12) is provided. The SbSI source (12) and buffer layer (16) with substrate (14) are placed in an ampoule (10). The ampoule is heated in a two-zone furnace (11). This causes the SbSI source (12) to form a vapor which reacts with the buffer layer (14) to form a thin film of SbSI.U
    corecore