582 research outputs found

    Distant ULIRGs in the SWIRE Survey

    Get PDF
    Covering ~49 square degrees in 6 separate fields, the Spitzer Wide-area InfraRed Extragalactic (SWIRE) Legacy survey has the largest area among Spitzer’s “wedding cake” suite of extragalactic surveys. SWIRE is thus optimized for studies of large scale structure, population studies requiring excellent statistics, and searches for rare objects. We discuss the search for high redshift ultraluminous infrared galaxies (ULIRGs) with SWIRE. We have selected complete samples of F_(24μm) > 200 μJy, optically faint, candidate high redshift (z>1) ULIRGs, based on their mid-infrared spectral energy distributions (SEDs). These can be broadly categorized as star formation (SF)-dominated, based on the presence of a clear stellar peak at rest frame 1.6μm redshifted into the IRAC bands, or AGN-dominated if the SED rises featureless into the mid-infrared. AGN-dominated galaxies strongly dominate at the brightest 24μm fluxes, while SF-dominated objects rise rapidly in frequency as F_(24) drops, dominating the sample below 0.5 mJy. We derive photometric redshifts and luminosities for SFdominated objects sampling the z~1.2-3 range. Luminosity functions are being derived and compared with submm-selected samples at similar redshifts. The clustering, millimeter and IR spectral properties of the samples have also been investigated

    Clustering of galaxies at 3.6 microns in the Spitzer Wide-area Infrared Extragalactic legacy survey

    Get PDF
    We investigate the clustering of galaxies selected in the 3.6 micron band of the Spitzer Wide-area Infrared Extragalactic (SWIRE) legacy survey. The angular two-point correlation function is calculated for eleven samples with flux limits of S_3.6 > 4-400 mujy, over an 8 square degree field. The angular clustering strength is measured at >5-sigma significance at all flux limits, with amplitudes of A=(0.49-29)\times10^{-3} at one degree, for a power-law model, A\theta^{-0.8}. We estimate the redshift distributions of the samples using phenomological models, simulations and photometric redshifts, and so derive the spatial correlation lengths. We compare our results with the GalICS (Galaxies In Cosmological Simulations) models of galaxy evolution and with parameterized models of clustering evolution. The GalICS simulations are consistent with our angular correlation functions, but fail to match the spatial clustering inferred from the phenomological models or the photometric redshifts. We find that the uncertainties in the redshift distributions of our samples dominate the statistical errors in our estimates of the spatial clustering. At low redshifts (median z<0.5) the comoving correlation length is approximately constant, r_0=6.1\pm0.5h^{-1} Mpc, and then decreases with increasing redshift to a value of 2.9\pm0.3h^{-1} Mpc for the faintest sample, for which the median redshift is z=1. We suggest that this trend can be attributed to a decrease in the average galaxy and halo mass in the fainter flux-limited samples, corresponding to changes in the relative numbers of early- and late-type galaxies. However, we cannot rule out strong evolution of the correlation length over 0.5<z<1.Comment: 14 pages, 9 (colour) figures. Published in MNRA

    A subarcsecond near-infrared view of massive galaxies at z > 1 with Gemini Multiconjugate Adaptive Optics

    Get PDF
    We present images taken using the Gemini South Adaptive Optics Imager (GSAOI) with the Gemini Multiconjugate Adaptive Optics System (GeMS) in three 2 arcmin2^2 fields in the Spitzer Extragalactic Representative Volume Survey. These GeMS/GSAOI observations are among the first 0.1\approx 0.1^{''} resolution data in the near-infrared spanning extragalactic fields exceeding 1.51.5^{\prime} in size. We use these data to estimate galaxy sizes, obtaining results similar to those from studies with the Hubble Space Telescope, though we find a higher fraction of compact star forming galaxies at z>2z>2. To disentangle the star-forming galaxies from active galactic nuclei (AGN), we use multiwavelength data from surveys in the optical and infrared, including far-infrared data from Herschel, as well as new radio continuum data from the Australia Telescope Compact Array and Very Large Array. We identify ultraluminous infrared galaxies (ULIRGs) at z13z \sim 1-3, which consist of a combination of pure starburst galaxies and Active Galactic Nuclei (AGN)/starburst composites. The ULIRGs show signs of recent merger activity, such as highly disturbed morphologies and include a rare candidate triple AGN. We find that AGN tend to reside in hosts with smaller scale sizes than purely star-forming galaxies of similar infrared luminosity. Our observations demonstrate the potential for MCAO to complement the deeper galaxy surveys to be made with the James Webb Space Telescope.Comment: 20 pages, AJ, in pres

    Infrared Constraints on AGN Tori Models

    Full text link
    This work focuses on the properties of dusty tori in active galactic nuclei (AGN) derived from the comparison of SDSS type 1 quasars with mid-Infrared (MIR) counterparts and a new, detailed torus model. The infrared data were taken by the Spitzer Wide-area InfraRed Extragalactic (SWIRE) Survey. Basic model parameters are constraint, such as the density law of the graphite and silicate grains, the torus size and its opening angle. A whole variety of optical depths is supported. The favoured models are those with decreasing density with distance from the centre, while there is no clear tendency as to the covering factor, ie small, medium and large covering factors are almost equally distributed. Based on the models that better describe the observed SEDs, properties such as the accretion luminosity, the mass of dust, the inner to outer radius ratio and the hydrogen column density are computed.Comment: 4 pages, 4 figures, to appear in "Infrared Diagnostics of Galaxy Evolution", ASP Conference Series, Pasadena, 14-16 November 200
    corecore