2 research outputs found

    Measurement of differential cross sections of isolated-photon plus heavy-flavour jet production in pp collisions at √s=8 TeV using the ATLAS detector

    Get PDF
    This Letter presents the measurement of differential cross sections of isolated prompt photons produced in association with a b-jet or a c-jet. These final states provide sensitivity to the heavy-flavour content of the proton and aspects related to the modelling of heavy-flavour quarks in perturbative QCD. The measurement uses proton–proton collision data at a centre-of-mass energy of 8 TeV recorded by the ATLAS detector at the LHC in 2012 corresponding to an integrated luminosity of up to 20.2 fb−1. The differential cross sections are measured for each jet flavour with respect to the transverse energy of the leading photon in two photon pseudorapidity regions: |ηγ | < 1.37 and 1.56 < |ηγ | < 2.37. The measurement covers photon transverse energies 25 < Eγ T < 400 GeV and 25 < Eγ T < 350 GeV respectively for the two |ηγ | regions. For each jet flavour, the ratio of the cross sections in the two |ηγ | regions is also measured. The measurement is corrected for detector effects and compared to leading-order and nextto-leading-order perturbative QCD calculations, based on various treatments and assumptions about the heavy-flavour content of the proton. Overall, the predictions agree well with the measurement, but some deviations are observed at high photon transverse energies. The total uncertainty in the measurement ranges between 13% and 66%, while the central γ + b measurement exhibits the smallest uncertainty, ranging from 13% to 27%, which is comparable to the precision of the theoretical predictions

    Search for heavy ZZ resonances in the +−+− and +−νν¯ final states using proton–proton collisions at √s = 13 TeV with the ATLAS detector

    No full text
    A search for heavy resonances decaying into a pair of Z bosons leading to +−+− and +−νν¯ final states, where stands for either an electron or a muon, is presented. The search uses proton–proton collision data at a centre-of-mass energy of 13 TeV corresponding to an integrated luminosity of 36.1 fb−1 collected with the ATLAS detector during 2015 and 2016 at the Large Hadron Collider. Different mass ranges for the hypothetical resonances are considered, depending on the final state and model. The different ranges span between 200 and 2000 GeV. The results are interpreted as upper limits on the production cross section of a spin-0 or spin-2 resonance. The upper limits for the spin-0 resonance are translated to exclusion contours in the context of Type-I and Type-II two-Higgs-doublet models, while those for the spin-2 resonance are used to constrain the Randall–Sundrum model with an extra dimension giving rise to spin-2 graviton excitations
    corecore