1,212 research outputs found
Forward modelling of brightness variations in Sun-like stars I. Emergence and surface transport of magnetic flux
The latitudinal distribution of starspots deviates from the solar pattern
with increasing rotation rate. Numerical simulations of magnetic flux emergence
and transport can help model the observed stellar activity patterns and the
associated brightness variations. We set up a composite model for the processes
of flux emergence and transport on Sun-like stars, to simulate stellar
brightness variations for various levels of magnetic activity and rotation
rates. Assuming that the distribution of magnetic flux at the base of the
convection zone follows solar scaling relations, we calculate the emergence
latitudes and tilt angles of bipolar regions at the surface for various
rotation rates, using thin-flux-tube simulations. Taking these two quantities
as input to a surface flux transport SFT model, we simulate the
diffusive-advective evolution of the radial field at the stellar surface,
including effects of active region nesting. As the rotation rate increases, (1)
magnetic flux emerges at higher latitudes and an inactive gap opens around the
equator, reaching a half-width of for , (2) the tilt
angles of freshly emerged bipolar regions show stronger variations with
latitude. Polar spots can form at by accumulation of
follower-polarity flux from decaying bipolar regions. From to
, the maximum spot coverage changes from 3 to 20%, respectively,
compared to 0.4% for the solar model. Nesting of activity can lead to strongly
non-axisymmetric spot distributions. On Sun-like stars rotating at
( days), polar spots can form, owing to
higher levels of flux emergence rate and tilt angles. Defining spots by a
threshold field strength yields global spot coverages that are roughly
consistent with stellar observations.Comment: 16 pages, 13 figures. Astron. & Astrophys. (in press); minor language
corrections mad
Reconstruction of solar activity for the last millennium using Be data
In a recent paper (Usoskin et al., 2002a), we have reconstructed the
concentration of the cosmogenic Be isotope in ice cores from the
measured sunspot numbers by using physical models for Be production in
the Earth's atmosphere, cosmic ray transport in the heliosphere, and evolution
of the Sun's open magnetic flux. Here we take the opposite route: starting from
the Be concentration measured in ice cores from Antarctica and
Greenland, we invert the models in order to reconstruct the 11-year averaged
sunspot numbers since 850 AD. The inversion method is validated by comparing
the reconstructed sunspot numbers with the directly observed sunspot record
since 1610. The reconstructed sunspot record exhibits a prominent period of
about 600 years, in agreement with earlier observations based on cosmogenic
isotopes. Also, there is evidence for the century scale Gleissberg cycle and a
number of shorter quasi-periodicities whose periods seem to fluctuate in the
millennium time scale. This invalidates the earlier extrapolation of
multi-harmonic representation of sunspot activity over extended time intervals.Comment: Submitted to A&
Role of defect interactions during hydrogen embrittlement in iron: A multiscale perspective
Hydrogen embrittlement (HE) is a phenomenon that affects both the physical and chemical properties of several intrinsically ductile metals. Consequently, understanding the mechanisms behind HE has been of particular interest in both experimental and modeling research. Discrepancies between experimental observations and modeling results have led to various proposals for HE mechanisms. Therefore, in this work we systematically examined the effect of hydrogen on two fundamental HE mechanisms in iron, namely, adsorption induced dislocation emission (AIDE) and hydrogen-enhanced decohesion (HED). In this work, we used density functional theory, atomistic simulations, and continuum Rice-Thompson criterion to systematically investigate: a) the incipient event ahead of a crack tip in single crystals subjected to mode-I loading conditions; b) the cohesive strength of grain boundaries; and c) the energy barrier for a slip transmission across the grain boundary. We observed that the presence of hydrogen 1) reduces the stress intensity factor required for both the dislocation nucleation and the cleavage response for different crack orientations, and 2) increases the energy barrier for slip transmission. Most importantly it was found that the AIDE and HED mechanisms are acting together to cause HE
Solar total and spectral irradiance reconstruction over the last 9000 years
Changes in solar irradiance and in its spectral distribution are among the
main natural drivers of the climate on Earth. However, irradiance measurements
are only available for less than four decades, while assessment of solar
influence on Earth requires much longer records. The aim of this work is to
provide the most up-to-date physics-based reconstruction of the solar total and
spectral irradiance (TSI/SSI) over the last nine millennia. The concentrations
of the cosmogenic isotopes 14C and 10Be in natural archives have been converted
to decadally averaged sunspot numbers through a chain of physics-based models.
TSI and SSI are reconstructed with an updated SATIRE model. Reconstructions are
carried out for each isotope record separately, as well as for their composite.
We present the first ever SSI reconstruction over the last 9000 years from the
individual 14C and 10Be records as well as from their newest composite. The
reconstruction employs physics-based models to describe the involved processes
at each step of the procedure. Irradiance reconstructions based on two
different cosmogenic isotope records, those of 14C and 10Be, agree well with
each other in their long-term trends despite their different geochemical paths
in the atmosphere of Earth. Over the last 9000 years, the reconstructed secular
variability in TSI is of the order of 0.11%, or 1.5 W/m2. After the Maunder
minimum, the reconstruction from the cosmogenic isotopes is consistent with
that from the direct sunspot number observation. Furthermore, over the
nineteenth century, the agreement of irradiance reconstructions using isotope
records with the reconstruction from the sunspot number by Chatzistergos et al.
(2017) is better than that with the reconstruction from the WDC-SILSO series
(Clette et al. 2014), with a lower chi-square-value
From Solar to Stellar Brightness Variations: The Effect of Metallicity
Context. Comparison studies of Sun-like stars with the Sun suggest an
anomalously low photometric variability of the Sun compared to Sun-like stars
with similar magnetic activity. Comprehensive understanding of stellar
variability is needed, to find a physical reasoning for this observation. Aims.
We investigate the effect of metallicity and effective temperature on the
photometric brightness change of Sun-like stars seen at different inclinations.
The considered range of fundamental stellar parameters is sufficiently small so
the stars, investigated here, still count as Sun-like or even as solar twins.
Methods. To model the brightness change of stars with solar magnetic activity,
we extend a well established model of solar brightness variations, SATIRE
(which stands for Spectral And Total Irradiance Reconstruction), which is based
on solar spectra, to stars with different fundamental parameters. For that we
calculate stellar spectra for different metallicities and effective temperature
using the radiative transfer code ATLAS9. Results. We show that even a small
change (e.g. within the observational error range) of metallicity or effective
temperature significantly affects the photometric brightness change compared to
the Sun. We find that for Sun-like stars, the amplitude of the brightness
variations obtained for Str\"omgren (b + y)/2 reaches a local minimum for
fundamental stellar parameters close to the solar metallicity and effective
temperature. Moreover, our results show that the effect of inclination
decreases for metallicity values greater than the solar metallicity. Overall,
we find that an exact determination of fundamental stellar parameters is
crucially important for understanding stellar brightness changes.Comment: 12 pages, 12 figures, accepted in A&
Radiative emission of solar features in Ca II K
We investigated the radiative emission of different types of solar features
in the spectral range of the Ca II K line.
We analyzed full-disk 2k x 2k observations from the PSPT Precision Solar
Photometric Telescope. The data were obtained by using three narrow-band
interference filters that sample the Ca II K line with different pass bands.
Two filters are centered in the line core, the other in the red wing of the
line. We measured the intensity and contrast of various solar features,
specifically quiet Sun (inter-network), network, enhanced network, plage, and
bright plage (facula) regions. Moreover, we compared the results obtained with
those derived from the numerical synthesis performed for the three PSPT filters
with a widely used radiative code on a set of reference semi-empirical
atmosphere models.Comment: In Proceedings of the 25th NSO Workshop: Chromospheric Structure and
Dynamic
The role of the Fraunhofer lines in solar brightness variability
The solar brightness varies on timescales from minutes to decades. A clear
identification of the physical processes behind such variations is needed for
developing and improving physics-based models of solar brightness variability
and reconstructing solar brightness in the past. This is, in turn, important
for better understanding the solar-terrestrial and solar-stellar connections.
We estimate the relative contributions of the continuum, molecular, and
atomic lines to the solar brightness variations on different timescales.
Our approach is based on the assumption that variability of the solar
brightness on timescales greater than a day is driven by the evolution of the
solar surface magnetic field. We calculated the solar brightness variations
employing the solar disc area coverage of magnetic features deduced from the
MDI/SOHO observations. The brightness contrasts of magnetic features relative
to the quiet Sun were calculated with a non-LTE radiative transfer code as
functions of disc position and wavelength. By consecutive elimination of
molecular and atomic lines from the radiative transfer calculations, we
assessed the role of these lines in producing solar brightness variability.
We show that the variations in Fraunhofer lines define the amplitude of the
solar brightness variability on timescales greater than a day and even the
phase of the total solar irradiance variability over the 11-year cycle. We also
demonstrate that molecular lines make substantial contribution to solar
brightness variability on the 11-year activity cycle and centennial timescales.
In particular, our model indicates that roughly a quarter of the total solar
irradiance variability over the 11-year cycle originates in molecular lines.
The maximum of the absolute spectral brightness variability on timescales
greater than a day is associated with the CN violet system between 380 and 390
nm.Comment: 9 pages, 4 figures, accepted for publication in
Astronomy&Astrophysic
- …