22 research outputs found

    Investigating the application of pixel-level and product-level image fusion approaches for monitoring surface water changes

    Get PDF
    The aim of this paper was to investigate the suitability of the pixel-level and product-level image fusion approaches to detect surface water changes. In doing so, firstly, the principal component analysis technique was applied to Landsat TM 2010 multispectral image to generate the PC components. Several pixel-level image fusion techniques were then performed to merge the Landsat ETM+ 2000 panchromatic with the PC1PC2PC3 band combination of Landsat TM 2010 imagery to highlight the surface water changes between the two images. The suitability of the resulting fused images for surface water change detection was evaluated quantitatively and visually. Finally, the support vector machine (SVM) technique was applied to the qualified fused images to map the highlighted changes. Furthermore, a product level fusion (PLF) approach based on various satellite-derived indices was employed to detect the surface water changes between ETM+ 2000 and TM 2010 images. The accuracy of the resulting change maps was assessed based on a reference change map produced using visual interpretation. The results demonstrated the effectiveness of the proposed approaches for surface water change detection, especially using the Gram Schmidt-SVM, PLF-NDWI, and PLF-NDVI methods which improved the accuracy of change detection over 99.70

    AN INTEGRATED APPROACH FOR SIMULATION AND PREDICTION OF LAND USE AND LAND COVER CHANGES AND URBAN GROWTH (CASE STUDY: SANANDAJ CITY IN IRAN)

    Get PDF
    One of the growing areas in the west of Iran is Sanandaj city, the center of Kordestan province, which requires the investigation of the city's growth and the estimation of land degradation. Today, the combination of remote sensing data and spatial models is a useful tool for monitoring and modeling land use and land cover (LULC) changes. In this study, LULC changes and the impact of Sanandaj city growth on land degradation in geographical directions during the period 1989 to 2019 were investigated. Also, the accuracy of three models, artificial neural network-cellular automata (ANN-CA), logistic regression-cellular automata (LR-CA), and the weight of evidence-cellular automata (WOE-CA) for modeling LULC changes was evaluated, and the results of these models were compared with the CA-Markov model. According to the results of the study, ANN-CA, LR-CA, and WOE-CA models, with an accuracy of more than 80%, are efficient and effective for modeling LULC changes and growth of urban areas

    Flood Forecasting Based on GIS and Hydraulic Model

    No full text

    Remote sensing-based operational modeling of fuel ignitability in Hyrcanian mixed forest, Iran

    No full text
    To date, the efficiency and effectiveness of early warning systems of satellite imagery for preventing and mitigating wildfire remain a challenging issue. The heat of pre-ignition (Qig) can be an index of fire likelihood, which is further enhanced with remotely sensed data, active fire data, and fuels information for operational application of satellite imagery in fire early warning systems. Qig is a prerequisite for forest fires by the side of ignition sources and weather. This study analyzed the effect of Qig variation on fire occurrences to develop a remote sensing-based initial fire likelihood index for identifying areas that have a high probability of fire. In this study, Qig of Rothermel’s fire spread model daily data is retrieved at 1 km pixels from MODIS data. MODIS active fire products were used to interpret the Qig of fuels for 10 days before the days of fire occurrences in November 2010 to determine the pre-fire conditions. A formula for converting Qig into an initial fire likelihood index (IFLI) was then used by binary logistic regression method. Analyses show that there was a positive association between suggested IFLI and fire occurrences during the study period with a fair diagnostic accuracy of 92%, and 80% for dead and live fuels, respectively. Mann–kendall test suggested that there are significant trends in the fuel moisture content time-series for both live and dead fuels. Further analysis using the Hosmer–Lemeshow test represents that the models showed an acceptable fit. The suggested IFLI is an effective tool for fire management decision-making whenever a near real-time fire likelihood is required

    Mapping landslide susceptibility with frequency ratio, statistical index, and weights of evidence models: a case study in northern Iran

    No full text
    The main objective of this study is to investigate potential application of frequency ratio (FR), weights of evidence (WoE), and statistical index (SI) models for landslide susceptibility mapping in a part of Mazandaran Province, Iran. First, a landslide inventory map was constructed from various sources. The landslide inventory map was then randomly divided in a ratio of 70/30 for training and validation of the models, respectively. Second, 13 landslide conditioning factors including slope degree, slope aspect, altitude, plan curvature, stream power index, topographic wetness index, sediment transport index, topographic roughness index, lithology, distance from streams, faults, roads, and land use type were prepared, and the relationships between these factors and the landslide inventory map were extracted by using the mentioned models. Subsequently, the multi-class weighted factors were used to generate landslide susceptibility maps. Finally, the susceptibility maps were verified and compared using several methods including receiver operating characteristic curve with the areas under the curve (AUC), landslide density, and spatially agreed area analyses. The success rate curve showed that the AUC for FR, WoE, and SI models was 81.51, 79.43, and 81.27, respectively. The prediction rate curve demonstrated that the AUC achieved by the three models was 80.44, 77.94, and 79.55, respectively. Although the sensitivity analysis using the FR model revealed that the modeling process was sensitive to input factors, the accuracy results suggest that the three models used in this study can be effective approaches for landslide susceptibility mapping in Mazandaran Province, and the resultant susceptibility maps are trustworthy for hazard mitigation strategies

    Simulating the effects of land use changes on soil erosion using RUSLE model

    No full text
    The aim of this paper is to evaluate the impacts of land use change on soil loss. Soil loss was quantified using the revised universal soil loss equation model in Darabkola catchment. Land use maps of 1992, 1998 and 2012 were derived from Landsat Thematic Mapper data. The mean annual soil loss was therefore determined for these years. The results showed open-canopy forest area decreased by 36% between 1992 and 1998. Likewise, the decreasing trend of forest lands which are near to residential areas has continued from 1795 ha in 1998 to 1765 ha in 2012. Also the results indicate that the maximum annual soil loss ranged from 5.06, 6.19 and 15.23 ton h−1 y−1 in 1992, 1998 and 2012, respectively. Also, by assuming that all watershed conditions and land uses be constant in the future, then the area of close- and open-canopy forest and dry agricultural lands will be 23.23, 2.88 and 29.89 ha in 2040, respectively

    Modelling static fire hazard in a semi-arid region using frequency analysis

    No full text
    Various fire hazard rating systems have been used by many countries at strategic and tactical levels for fire prevention and fire safety programs. Assigning subjective weight to parameters that cause fire hazard has been widely used to model wildland fire hazard. However, these methods are sensitive to experts' judgements because they are independent of any statistical approaches. Therefore, in the present study, we propose a wildland fire hazard method based on frequency analysis (i.e. a probability distribution model) to identify the locations of fire hazard in north-eastern Iran, which has frequent fire. The proposed methodology uses factors that do not change or change very slowly over time to identify static fire hazard areas, such as vegetation moisture, slope, aspect, elevation, distance from roads and proximity to settlements, as essential parameters. Several probability distributions are assigned to each factor to show the possibility of fire using non-linear regressions. The results show that approximately 86% of MODerate-resolution Imaging Spectroradiometer (MODIS) hot spot data are located truly in the high fire hazard areas as identified in the present study and the most significant contributing factor to fire in Golestan Province, Iran, is elevation. The present study also reveals that approximately 14% of the total study area (∌20368km2) has a fire hazard of 66%, which can be considered very high. Therefore, this area - located mostly in the central, west and north-east regions of Golestan Province - should be considered for an effective conservation strategy of wildland fire
    corecore