279 research outputs found

    Time-dependent energy absorption changes during ultrafast lattice deformation

    Full text link
    The ultrafast time-dependence of the energy absorption of covalent solids upon excitation with femtosecond laser pulses is theoretically analyzed. We use a microscopic theory to describe laser induced structural changes and their influence on the electronic properties. We show that from the time evolution of the energy absorbed by the system important information on the electronic and atomic structure during ultrafast phase transitions can be gained. Our results reflect how structural changes affect the capability of the system to absorb external energy.Comment: 7 pages RevTeX, 8 ps figures, submitted to Journal of Appl. Physic

    Theory for the ultrafast ablation of graphite films

    Full text link
    The physical mechanisms for damage formation in graphite films induced by femtosecond laser pulses are analyzed using a microscopic electronic theory. We describe the nonequilibrium dynamics of electrons and lattice by performing molecular dynamics simulations on time-dependent potential energy surfaces. We show that graphite has the unique property of exhibiting two distinct laser induced structural instabilities. For high absorbed energies (> 3.3 eV/atom) we find nonequilibrium melting followed by fast evaporation. For low intensities above the damage threshold (> 2.0 eV/atom) ablation occurs via removal of intact graphite sheets.Comment: 5 pages RevTeX, 3 PostScript figures, submitted to Phys. Re

    Ablation of solids by femtosecond lasers: ablation mechanism and ablation thresholds for metals and dielectrics

    Full text link
    The mechanism of ablation of solids by intense femtosecond laser pulses is described in an explicit analytical form. It is shown that at high intensities when the ionization of the target material is complete before the end of the pulse, the ablation mechanism is the same for both metals and dielectrics. The physics of this new ablation regime involves ion acceleration in the electrostatic field caused by charge separation created by energetic electrons escaping from the target. The formulae for ablation thresholds and ablation rates for metals and dielectrics, combining the laser and target parameters, are derived and compared to experimental data. The calculated dependence of the ablation thresholds on the pulse duration is in agreement with the experimental data in a femtosecond range, and it is linked to the dependence for nanosecond pulses.Comment: 27 pages incl.3 figs; presented at CLEO-Europe'2000 11-15 Sept.2000; papers QMD6 and CTuK11

    Short pulse laser-induced optical damage and fracto-emission of amorphous, diamond-like carbon

    Full text link
    Short pulse laser damage and ablation of amorphous, diamond-like carbon films is investigated. Material removal is due to fracture of the film and ejection of large fragments, which exhibit a broadband emission of microsecond duration

    Does femtosecond time-resolved second-harmonic generation probe electron temperatures at surfaces?

    Full text link
    Femtosecond pump-probe second-harmonic generation (SHG) and transient linear reflectivity measurements were carried out on polycrystalline Cu, Ag and Au in air to analyze whether the electron temperature affects Fresnel factors or nonlinear susceptibilities, or both. Sensitivity to electron temperatures was attained by using photon energies near the interband transition threshold. We find that the nonlinear susceptibility carries the electron temperature dependence in case of Ag and Au, while for Cu the dependence is in the Fresnel factors. This contrasting behavior emphasizes that SHG is not a priori sensitive to electron dynamics at surfaces or interfaces, notwithstanding its cause.Comment: 11 pages, 4 figure

    First-principle study of excitonic self-trapping in diamond

    Full text link
    We present a first-principles study of excitonic self-trapping in diamond. Our calculation provides evidence for self-trapping of the 1s core exciton and gives a coherent interpretation of recent experimental X-ray absorption and emission data. Self-trapping does not occur in the case of a single valence exciton. We predict, however, that self-trapping should occur in the case of a valence biexciton. This process is accompanied by a large local relaxation of the lattice which could be observed experimentally.Comment: 12 pages, RevTex file, 3 Postscript figure

    In-situ observation of the formation of laser-induced periodic surface structures with extreme spatial and temporal resolution

    Get PDF
    Irradiation of solid surfaces with intense ultrashort laser pulses represents a unique way of depositing energy into materials. It allows to realize states of extreme electronic excitation and/or very high temperature and pressure, and to drive materials close to and beyond fundamental stability limits. As a consequence, structural changes and phase transitions often occur along unusual pathways and under strongly non-equilibrium conditions. Due to the inherent multiscale nature - both temporally and spatially - of these irreversible processes their direct experimental observation requires techniques that combine high temporal resolution with the appropriate spatial resolution and the capability to obtain good quality data on a single pulse/event basis. In this respect fourth generation light sources, namely short wavelength, short pulse free electron lasers (FELs) are offering new and fascinating possibilities. As an example, this chapter will discuss the results of scattering experiments carried at the FLASH free electron laser at DESY (Hamburg, Germany), which allowed us to resolve laser-induced structure formation at surfaces on the nanometer to sub-micron length scale and in temporal regimes ranging from picoseconds to several nanoseconds with sub-picosecond resolution

    Supersonic strain front driven by a dense electron-hole plasma

    Get PDF
    We study coherent strain in (001) Ge generated by an ultrafast laser-initiated high density electron-hole plasma. The resultant coherent pulse is probed by time-resolved x-ray diffraction through changes in the anomalous transmission. The acoustic pulse front is driven by ambipolar diffusion of the electron-hole plasma and propagates into the crystal at supersonic speeds. Simulations of the strain including electron-phonon coupling, modified by carrier diffusion and Auger recombination, are in good agreement with the observed dynamics.Comment: 4 pages, 6 figure
    corecore