17 research outputs found
Low Concentrations of Methamphetamine Can Protect Dopaminergic Cells against a Larger Oxidative Stress Injury: Mechanistic Study
Mild stress can protect against a larger insult, a phenomenon termed preconditioning or tolerance. To determine if a low intensity stressor could also protect cells against intense oxidative stress in a model of dopamine deficiency associated with Parkinson disease, we used methamphetamine to provide a mild, preconditioning stress, 6-hydroxydopamine (6-OHDA) as a source of potentially toxic oxidative stress, and MN9D cells as a model of dopamine neurons. We observed that prior exposure to subtoxic concentrations of methamphetamine protected these cells against 6-OHDA toxicity, whereas higher concentrations of methamphetamine exacerbated it. The protection by methamphetamine was accompanied by decreased uptake of both [3H] dopamine and 6-OHDA into the cells, which may have accounted for some of the apparent protection. However, a number of other effects of methamphetamine exposure suggest that the drug also affected basic cellular survival mechanisms. First, although methamphetamine preconditioning decreased basal pERK1/2 and pAkt levels, it enhanced the 6-OHDA-induced increase in these phosphokinases. Second, the apparent increase in pERK1/2 activity was accompanied by increased pMEK1/2 levels and decreased activity of protein phosphatase 2. Third, methamphetamine upregulated the pro-survival protein Bcl-2. Our results suggest that exposure to low concentrations of methamphetamine cause a number of changes in dopamine cells, some of which result in a decrease in their vulnerability to subsequent oxidative stress. These observations may provide insights into the development of new therapies for prevention or treatment of PD
Mitochondrial respiratory states and rate
As the knowledge base and importance of mitochondrial physiology to human health expands, the necessity for harmonizing the terminologyconcerning mitochondrial respiratory states and rates has become increasingly apparent. Thechemiosmotic theoryestablishes the mechanism of energy transformationandcoupling in oxidative phosphorylation. Theunifying concept of the protonmotive force providestheframeworkfordeveloping a consistent theoretical foundation ofmitochondrial physiology and bioenergetics.We followguidelines of the International Union of Pure and Applied Chemistry(IUPAC)onterminology inphysical chemistry, extended by considerationsofopen systems and thermodynamicsof irreversible processes.Theconcept-driven constructive terminology incorporates the meaning of each quantity and alignsconcepts and symbols withthe nomenclature of classicalbioenergetics. We endeavour to provide a balanced view ofmitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes.Uniform standards for evaluation of respiratory states and rates will ultimatelycontribute to reproducibility between laboratories and thussupport the development of databases of mitochondrial respiratory function in species, tissues, and cells.Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery
Approaches in biotechnological applications of natural polymers
Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)
Effector CD8 T cell immunity in microsporidial infection: a lone defense mechanism
Microsporidia are a group of pathogens, which can pose severe risks to the immunocompromised population such as HIV infected individuals. The expertise to diagnose these pathogens is limited and therefore their prevalence is believed to be much higher than what is currently known. In a mouse model of infections, it has been reported that CD8 T cells are the primary effector cells responsible for protecting the infected host. As the infection is acquired via per-oral route, CD8 T cells in the gut compartment apparently act as a first line of defense against the pathogens. Thus, generation of a robust CD8 T cell response that exhibits polyfunctional ability is critical for host survival. In this review, we describe the effector CD8 T cells generated during microsporidial infection and underline the factors that may be essential for the elicitation of protective immunity against this understudied but significant pathogen. Overall, this review will highlight the necessity for a better understanding of the development of the CD8 T cell response in gut associated lymphoid tissue (GALT) and provide some insights into therapies that may be used to restore defective CD8 T cell functionality in an immunocompromised situation