5,694 research outputs found

    Brownian yet non-Gaussian diffusion: from superstatistics to subordination of diffusing diffusivities

    Get PDF
    A growing number of biological, soft, and active matter systems are observed to exhibit normal diffusive dynamics with a linear growth of the mean squared displacement, yet with a non-Gaussian distribution of increments. Based on the Chubinsky-Slater idea of a diffusing diffusivity we here establish and analyze a minimal model framework of diffusion processes with fluctuating diffusivity. In particular, we demonstrate the equivalence of the diffusing diffusivity process with a superstatistical approach with a distribution of diffusivities, at times shorter than the diffusivity correlation time. At longer times a crossover to a Gaussian distribution with an effective diffusivity emerges. Specifically, we establish a subordination picture of Brownian but non-Gaussian diffusion processes, that can be used for a wide class of diffusivity fluctuation statistics. Our results are shown to be in excellent agreement with simulations and numerical evaluations.Comment: 19 pages, 6 figures, RevTeX. Physical Review X, at pres
    • …
    corecore