735 research outputs found

    Collective excitations on a surface of topological insulator

    Get PDF
    We study collective excitations in a helical electron liquid on a surface of three-dimensional topological insulator. Electron in helical liquid obeys Dirac-like equation for massless particless and direction of its spin is strictly determined by its momentum. Due to this spin-momentum locking, collective excitations in the system manifest themselves as coupled charge- and spin-density waves. We develop quantum field-theoretical description of spin-plasmons in helical liquid and study their properties and internal structure. Value of spin polarization arising in the system with excited spin-plasmons is calculated. We also consider the scattering of spin-plasmons on magnetic and nonmagnetic impurities and external potentials, and show that the scattering occurs mainly into two side lobes. Analogies with Dirac electron gas in graphene are discussed.Comment: 9 pages, 6 figure

    Electron-electron and electron-hole pairing in graphene structures

    Full text link
    The superconducting pairing of electrons in doped graphene due to in-plane and out-of-plane phonons is considered. It is shown that the structure of the order parameter in the valley space substantially affects conditions of the pairing. Electron-hole pairing in graphene bilayer in the strong coupling regime is also considered. Taking into account retardation of the screened Coulomb pairing potential shows a significant competition between the electron-hole direct attraction and their repulsion due to virtual plasmons and single-particle excitations.Comment: 13 pages with 4 figures; accepted for publication in Phil. Trans. Roy. Soc.

    Participant observation methodology for the organizational consultant

    Get PDF

    Drift velocity of edge magnetoplasmons due to magnetic edge channels

    Full text link
    Edge magnetoplasmons arise on a boundary of conducting layer in perpendicular magnetic field due to an interplay of electron cyclotron motion and Coulomb repulsion. Lateral electric field, which confines electrons inside the sample, drives their spiraling motion in magnetic field along the edge with the average drift velocity contributing to the total magnetoplasmon velocity. We revisit this classical picture by developing fully quantum theory of drift velocity starting from analysis of magnetic edge channels and their electrodynamic response. We derive the quantum-mechanical expression for the drift velocity, which arises in our theory as a characteristic of such response. Using the Wiener-Hopf method to solve analytically the edge mode electrodynamic problem, we demonstrate that the edge channel response effectively enhances the bulk Hall response of the conducting layer and thus increases the edge magnetoplasmon velocity. In the quasiclassical long-wavelength limit of our model, the drift velocity is simply added to the total magnetoplasmon velocity, in agreement with the classical picture.Comment: 10 pages, 6 figure
    corecore