3 research outputs found

    Revisiting the Friedberg-Lee-Sirlin soliton model

    Full text link
    Non-topological solitons are localized classical field configurations stabilized by a Noether charge. Friedberg, Lee, and Sirlin proposed a simple renormalizable soliton model in their seminal 1976 paper, consisting of a complex scalar field that carries the Noether charge and a real-scalar mediator. We revisit this model, point out commonalities and differences with Q-ball solitons, and provide analytic approximations to the underlying differential equations.Comment: 9 pages, matches EPJC versio

    The Tunneling Potential Approach to Q-Balls

    Full text link
    Q-balls are bound-state configurations of complex scalars stabilized by a conserved Noether charge Q. They are solutions to a second-order differential equation that is structurally identical to Euclidean vacuum-decay bounce solutions in three dimensions. This enables us to translate the recent tunneling potential approach to Q-balls, which amounts to a reformulation of the problem that can simplify the task of finding approximate and even exact Q-ball solutions.Comment: 16 page

    Lepton flavor violation by two units

    No full text
    Charged lepton flavor violation arises in the Standard Model Effective Field Theory at mass dimension six. The operators that induce neutrinoless muon and tauon decays are among the best constrained and are sensitive to new-physics scales up to 107GeV. An entirely different class of lepton-flavor-violating operators violates lepton flavors by two units rather than one and does not lead to such clean signatures. Even the well-known case of muonium–anti-muonium conversion that falls into this category is only sensitive to two out of the three ΔLμ=−ΔLe=2 dimension-six operators. We derive constraints on many of these operators from lepton flavor universality and show how to make further progress with future searches at Belle II and future experiments such as Z factories or muon colliders
    corecore