6,457 research outputs found
Ferromagnetic phase transition for the spanning-forest model (q \to 0 limit of the Potts model) in three or more dimensions
We present Monte Carlo simulations of the spanning-forest model (q \to 0
limit of the ferromagnetic Potts model) in spatial dimensions d=3,4,5. We show
that, in contrast to the two-dimensional case, the model has a "ferromagnetic"
second-order phase transition at a finite positive value w_c. We present
numerical estimates of w_c and of the thermal and magnetic critical exponents.
We conjecture that the upper critical dimension is 6.Comment: LaTex2e, 4 pages; includes 6 Postscript figures; Version 2 has
expanded title as published in PR
Cluster simulations of loop models on two-dimensional lattices
We develop cluster algorithms for a broad class of loop models on
two-dimensional lattices, including several standard O(n) loop models at n \ge
1. We show that our algorithm has little or no critical slowing-down when 1 \le
n \le 2. We use this algorithm to investigate the honeycomb-lattice O(n) loop
model, for which we determine several new critical exponents, and a
square-lattice O(n) loop model, for which we obtain new information on the
phase diagram.Comment: LaTex2e, 4 pages; includes 1 table and 2 figures. Totally rewritten
in version 2, with new theory and new data. Version 3 as published in PR
Dynamic critical behavior of the Chayes-Machta-Swendsen-Wang algorithm
We study the dynamic critical behavior of the Chayes-Machta dynamics for the
Fortuin-Kasteleyn random-cluster model, which generalizes the Swendsen-Wang
dynamics for the q-state Potts model to noninteger q, in two and three spatial
dimensions, by Monte Carlo simulation. We show that the Li-Sokal bound z \ge
\alpha/\nu is close to but probably not sharp in d=2, and is far from sharp in
d=3, for all q. The conjecture z \ge \beta/\nu is false (for some values of q)
in both d=2 and d=3.Comment: Revtex4, 4 pages including 4 figure
Grassmann Integral Representation for Spanning Hyperforests
Given a hypergraph G, we introduce a Grassmann algebra over the vertex set,
and show that a class of Grassmann integrals permits an expansion in terms of
spanning hyperforests. Special cases provide the generating functions for
rooted and unrooted spanning (hyper)forests and spanning (hyper)trees. All
these results are generalizations of Kirchhoff's matrix-tree theorem.
Furthermore, we show that the class of integrals describing unrooted spanning
(hyper)forests is induced by a theory with an underlying OSP(1|2)
supersymmetry.Comment: 50 pages, it uses some latex macros. Accepted for publication on J.
Phys.
Critical speeding-up in a local dynamics for the random-cluster model
We study the dynamic critical behavior of the local bond-update (Sweeny)
dynamics for the Fortuin-Kasteleyn random-cluster model in dimensions d=2,3, by
Monte Carlo simulation. We show that, for a suitable range of q values, the
global observable S_2 exhibits "critical speeding-up": it decorrelates well on
time scales much less than one sweep, so that the integrated autocorrelation
time tends to zero as the critical point is approached. We also show that the
dynamic critical exponent z_{exp} is very close (possibly equal) to the
rigorous lower bound \alpha/\nu, and quite possibly smaller than the
corresponding exponent for the Chayes-Machta-Swendsen-Wang cluster dynamics.Comment: LaTex2e/revtex4, 4 pages, includes 5 figure
Equilibrium fluid-solid coexistence of hard spheres
We present a tethered Monte Carlo simulation of the crystallization of hard
spheres. Our method boosts the traditional umbrella sampling to the point of
making practical the study of constrained Gibb's free energies depending on
several crystalline order-parameters. We obtain high-accuracy estimates of the
fluid-crystal coexistence pressure for up to 2916 particles (enough to
accommodate fluid-solid interfaces). We are able to extrapolate to infinite
volume the coexistence pressure (p_{co}=11.5727(10) k_B T/\sigma^3) and the
interfacial free energy (\gamma_{100}=0.636(11) k_B T/\sigma^2).Comment: 6 pages, 4 pdf figures. Version to be published in PRL. Appendices
contain Supplemental Materia
Renormalised four-point coupling constant in the three-dimensional O(N) model with N=0
We simulate self-avoiding walks on a cubic lattice and determine the second
virial coefficient for walks of different lengths. This allows us to determine
the critical value of the renormalized four-point coupling constant in the
three-dimensional N-vector universality class for N=0. We obtain g* =
1.4005(5), where g is normalized so that the three-dimensional
field-theoretical beta-function behaves as \beta(g) = - g + g^2 for small g. As
a byproduct, we also obtain precise estimates of the interpenetration ratio
Psi*, Psi* = 0.24685(11), and of the exponent \nu, \nu = 0.5876(2).Comment: 16 page
Topological interactions between ring polymers: Implications for chromatin loops
Chromatin looping is a major epigenetic regulatory mechanism in higher
eukaryotes. Besides its role in transcriptional regulation, chromatin loops
have been proposed to play a pivotal role in the segregation of entire
chromosomes. The detailed topological and entropic forces between loops still
remain elusive. Here, we quantitatively determine the potential of mean force
between the centers of mass of two ring polymers, i.e. loops. We find that the
transition from a linear to a ring polymer induces a strong increase in the
entropic repulsion between these two polymers. On top, topological interactions
such as the non-catenation constraint further reduce the number of accessible
conformations of close-by ring polymers by about 50%, resulting in an
additional effective repulsion. Furthermore, the transition from linear to ring
polymers displays changes in the conformational and structural properties of
the system. In fact, ring polymers adopt a markedly more ordered and aligned
state than linear ones. The forces and accompanying changes in shape and
alignment between ring polymers suggest an important regulatory function of
such a topology in biopolymers. We conjecture that dynamic loop formation in
chromatin might act as a versatile control mechanism regulating and maintaining
different local states of compaction and order.Comment: 12 pages, 11 figures. The article has been accepted by The Journal Of
Chemical Physics. After it is published, it will be found at
http://jcp.aip.or
Self-avoiding walks on scale-free networks
Several kinds of walks on complex networks are currently used to analyze
search and navigation in different systems. Many analytical and computational
results are known for random walks on such networks. Self-avoiding walks (SAWs)
are expected to be more suitable than unrestricted random walks to explore
various kinds of real-life networks. Here we study long-range properties of
random SAWs on scale-free networks, characterized by a degree distribution
. In the limit of large networks (system size ), the average number of SAWs starting from a generic site
increases as , with . For finite ,
is reduced due to the presence of loops in the network, which causes the
emergence of attrition of the paths. For kinetic growth walks, the average
maximum length, , increases as a power of the system size: , with an exponent increasing as the parameter is
raised. We discuss the dependence of on the minimum allowed degree in
the network. A similar power-law dependence is found for the mean
self-intersection length of non-reversal random walks. Simulation results
support our approximate analytical calculations.Comment: 9 pages, 7 figure
- …