14 research outputs found

    Computational Analysis Reveals the Temporal Acquisition of Pathway Alterations during the Evolution of Cancer

    Get PDF
    Cancer metastasis is the lethal developmental step in cancer, responsible for the majority of cancer deaths. To metastasise, cancer cells must acquire the ability to disseminate systemically and to escape an activated immune response. Here, we endeavoured to investigate if metastatic dissemination reflects acquisition of genomic traits that are selected for. We acquired mutation and copy number data from 8332 tumours representing 19 cancer types acquired from The Cancer Genome Atlas and the Hartwig Medical Foundation. A total of 827,344 non-synonymous mutations across 8332 tumour samples representing 19 cancer types were timed as early or late relative to copy number alterations, and potential driver events were annotated. We found that metastatic cancers had a significantly higher proportion of clonal mutations and a general enrichment of early mutations in p53 and RTK/KRAS pathways. However, while individual pathways demonstrated a clear time-separated preference for specific events, the relative timing did not vary between primary and metastatic cancers. These results indicate that the selective pressure that drives cancer development does not change dramatically between primary and metastatic cancer on a genomic level, and is mainly focused on alterations that increase proliferation

    Increased Soluble PD-1 Predicts Response to Nivolumab plus Ipilimumab in Melanoma

    Get PDF
    SIMPLE SUMMARY: Checkpoint inhibitors have emerged as an effective therapy for patients with metastatic melanoma significantly improving survival for these patients. Despite this, many patients do not respond to the therapy and no current biomarkers can identify responders from non-responders. Using machine learning, we analysed cytokine levels in serially collected liquid biopsy to identify cytokine changes associated with response to checkpoint inhibitors in advanced-stage melanoma patients. The results presented here highlight that serial measurements of cytokine levels are a strong predictor of treatment response. Particularly, we demonstrate that high increases of soluble PD-1 measured from baseline to on-treatment is significantly associated with superior PFS in patients treated with nivolumab plus ipililumab. These results suggest that monitoring cytokine levels using serial samples is informative of treatment response and can improve guidance of treatment modality and the outcome of cancer patients. ABSTRACT: Background: Checkpoint inhibitors have revolutionized the treatment of metastatic melanoma, yielding long-term survival in a considerable proportion of the patients. Yet, 40–60% of patients do not achieve a long-term benefit from such therapy, emphasizing the urgent need to identify biomarkers that can predict response to immunotherapy and guide patients for the best possible treatment. Here, we exploited an unsupervised machine learning approach to identify potential inflammatory cytokine signatures from liquid biopsies, which could predict response to immunotherapy in melanoma. Methods: We studied a cohort of 77 patients diagnosed with unresectable advanced-stage melanoma undergoing treatment with first-line nivolumab plus ipilimumab or pembrolizumab. Baseline and on-treatment plasma samples were tested for levels of PD-1, PD-L1, IFNγ, IFNβ, CCL20, CXCL5, CXCL10, IL6, IL8, IL10, MCP1, and TNFα and analyzed by Uniform Manifold Approximation and Projection (UMAP) dimension reduction method and k-means clustering analysis. Results: Interestingly, using UMAP analysis, we found that treatment-induced cytokine changes measured as a ratio between baseline and on-treatment samples correlated significantly to progression-free survival (PFS). For patients treated with nivolumab plus ipilimumab we identified a group of patients with superior PFS that were characterized by significantly higher baseline-to-on-treatment increments of PD-1, PD-L1, IFNγ, IL10, CXCL10, and TNFα compared to patients with worse PFS. Particularly, a high PD-1 increment was a strong individual predictor for superior PFS (HR = 0.13; 95% CI 0.034–0.49; p = 0.0026). In contrast, decreasing levels of IFNγ and IL6 and increasing levels of CXCL5 were associated with superior PFS in the pembrolizumab group, although none of the cytokines were individually predictors for PFS. Conclusions: In short, our study demonstrates that a high increment of PD-1 is associated with superior PFS in advanced-stage melanoma patients treated with nivolumab plus ipilimumab. In contrast, decreasing levels of IFNγ and IL6, and increasing levels of CXCL5 are associated with response to pembrolizumab. These results suggest that using serial samples to monitor changes in cytokine levels early during treatment is informative for treatment response

    The evolution of lung cancer and impact of subclonal selection in TRACERx

    Get PDF
    Lung cancer is the leading cause of cancer-associated mortality worldwide. Here we analysed 1,644 tumour regions sampled at surgery or during follow-up from the first 421 patients with non-small cell lung cancer prospectively enrolled into the TRACERx study. This project aims to decipher lung cancer evolution and address the primary study endpoint: determining the relationship between intratumour heterogeneity and clinical outcome. In lung adenocarcinoma, mutations in 22 out of 40 common cancer genes were under significant subclonal selection, including classical tumour initiators such as TP53 and KRAS. We defined evolutionary dependencies between drivers, mutational processes and whole genome doubling (WGD) events. Despite patients having a history of smoking, 8% of lung adenocarcinomas lacked evidence of tobacco-induced mutagenesis. These tumours also had similar detection rates for EGFR mutations and for RET, ROS1, ALK and MET oncogenic isoforms compared with tumours in never-smokers, which suggests that they have a similar aetiology and pathogenesis. Large subclonal expansions were associated with positive subclonal selection. Patients with tumours harbouring recent subclonal expansions, on the terminus of a phylogenetic branch, had significantly shorter disease-free survival. Subclonal WGD was detected in 19% of tumours, and 10% of tumours harboured multiple subclonal WGDs in parallel. Subclonal, but not truncal, WGD was associated with shorter disease-free survival. Copy number heterogeneity was associated with extrathoracic relapse within 1 year after surgery. These data demonstrate the importance of clonal expansion, WGD and copy number instability in determining the timing and patterns of relapse in non-small cell lung cancer and provide a comprehensive clinical cancer evolutionary data resource

    The evolution of non-small cell lung cancer metastases in TRACERx

    Get PDF
    Metastatic disease is responsible for the majority of cancer-related deaths. We report the longitudinal evolutionary analysis of 126 non-small cell lung cancer (NSCLC) tumours from 421 prospectively recruited patients in TRACERx who developed metastatic disease, compared with a control cohort of 144 non-metastatic tumours. In 25% of cases, metastases diverged early, before the last clonal sweep in the primary tumour, and early divergence was enriched for patients who were smokers at the time of initial diagnosis. Simulations suggested that early metastatic divergence more frequently occurred at smaller tumour diameters (less than 8 mm). Single-region primary tumour sampling resulted in 83% of late divergence cases being misclassified as early, highlighting the importance of extensive primary tumour sampling. Polyclonal dissemination, which was associated with extrathoracic disease recurrence, was found in 32% of cases. Primary lymph node disease contributed to metastatic relapse in less than 20% of cases, representing a hallmark of metastatic potential rather than a route to subsequent recurrences/disease progression. Metastasis-seeding subclones exhibited subclonal expansions within primary tumours, probably reflecting positive selection. Our findings highlight the importance of selection in metastatic clone evolution within untreated primary tumours, the distinction between monoclonal versus polyclonal seeding in dictating site of recurrence, the limitations of current radiological screening approaches for early diverging tumours and the need to develop strategies to target metastasis-seeding subclones before relapse

    Genomic–transcriptomic evolution in lung cancer and metastasis

    Get PDF
    Intratumour heterogeneity (ITH) fuels lung cancer evolution, which leads to immune evasion and resistance to therapy. Here, using paired whole-exome and RNA sequencing data, we investigate intratumour transcriptomic diversity in 354 non-small cell lung cancer tumours from 347 out of the first 421 patients prospectively recruited into the TRACERx study. Analyses of 947 tumour regions, representing both primary and metastatic disease, alongside 96 tumour-adjacent normal tissue samples implicate the transcriptome as a major source of phenotypic variation. Gene expression levels and ITH relate to patterns of positive and negative selection during tumour evolution. We observe frequent copy number-independent allele-specific expression that is linked to epigenomic dysfunction. Allele-specific expression can also result in genomic–transcriptomic parallel evolution, which converges on cancer gene disruption. We extract signatures of RNA single-base substitutions and link their aetiology to the activity of the RNA-editing enzymes ADAR and APOBEC3A, thereby revealing otherwise undetected ongoing APOBEC activity in tumours. Characterizing the transcriptomes of primary–metastatic tumour pairs, we combine multiple machine-learning approaches that leverage genomic and transcriptomic variables to link metastasis-seeding potential to the evolutionary context of mutations and increased proliferation within primary tumour regions. These results highlight the interplay between the genome and transcriptome in influencing ITH, lung cancer evolution and metastasis

    Antibodies against endogenous retroviruses promote lung cancer immunotherapy

    Get PDF
    B cells are frequently found in the margins of solid tumours as organized follicles in ectopic lymphoid organs called tertiary lymphoid structures (TLS). Although TLS have been found to correlate with improved patient survival and response to immune checkpoint blockade (ICB), the underlying mechanisms of this association remain elusive. Here we investigate lung-resident B cell responses in patients from the TRACERx 421 (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy) and other lung cancer cohorts, and in a recently established immunogenic mouse model for lung adenocarcinoma. We find that both human and mouse lung adenocarcinomas elicit local germinal centre responses and tumour-binding antibodies, and further identify endogenous retrovirus (ERV) envelope glycoproteins as a dominant anti-tumour antibody target. ERV-targeting B cell responses are amplified by ICB in both humans and mice, and by targeted inhibition of KRAS(G12C) in the mouse model. ERV-reactive antibodies exert anti-tumour activity that extends survival in the mouse model, and ERV expression predicts the outcome of ICB in human lung adenocarcinoma. Finally, we find that effective immunotherapy in the mouse model requires CXCL13-dependent TLS formation. Conversely, therapeutic CXCL13 treatment potentiates anti-tumour immunity and synergizes with ICB. Our findings provide a possible mechanistic basis for the association of TLS with immunotherapy response

    Treatment Represents a Key Driver of Metastatic Cancer Evolution

    No full text
    Metastasis is the main cause of cancer death, yet the evolutionary processes behind it remain largely unknown. Here, through analysis of large panel-based genomic datasets from the AACR Genomics Evidence Neoplasia Information Exchange project, including 40,979 primary and metastatic tumors across 25 distinct cancer types, we explore how the evolutionary pressure of cancer metastasis shapes the selection of genomic drivers of cancer. The most commonly affected genes were TP53, MYC, and CDKN2A, with no specific pattern associated with metastatic disease. This suggests that, on a driver mutation level, the selective pressure operating in primary and metastatic tumors is similar. The most highly enriched individual driver mutations in metastatic tumors were mutations known to drive resistance to hormone therapies in breast and prostate cancer (ESR1 and AR), anti-EGFR therapy in non–small cell lung cancer (EGFR T790M), and imatinib in gastrointestinal cancer (KIT V654A). Specific mutational signatures were also associated with treatment in three cancer types, supporting clonal selection following anticancer therapy. Overall, this implies that initial acquisition of driver mutations is predominantly shaped by the tissue of origin, where specific mutations define the developing primary tumor and drive growth, immune escape, and tolerance to chromosomal instability. However, acquisition of driver mutations that contribute to metastatic disease is less specific, with the main genomic drivers of metastatic cancer evolution associating with resistance to therapy

    Foundation Models for Quantitative Biomarker Discovery in Cancer Imaging

    No full text
    Foundation models represent a recent paradigm shift in deep learning, where a single large-scale model trained on vast amounts of data can serve as the foundation for various downstream tasks. Foundation models are generally trained using self-supervised learning and excel in reducing the demand for training samples in downstream applications. This is especially important in medicine, where large labeled datasets are often scarce. Here, we developed a foundation model for imaging biomarker discovery by training a convolutional encoder through self-supervised learning using a comprehensive dataset of 11,467 radiographic lesions. The foundation model was evaluated in distinct and clinically relevant applications of imaging-based biomarkers. We found that they facilitated better and more efficient learning of imaging biomarkers and yielded task-specific models that significantly outperformed their conventional supervised counterparts on downstream tasks. The performance gain was most prominent when training dataset sizes were very limited. Furthermore, foundation models were more stable to input and inter-reader variations and showed stronger associations with underlying biology. Our results demonstrate the tremendous potential of foundation models in discovering novel imaging biomarkers that may extend to other clinical use cases and can accelerate the widespread translation of imaging biomarkers into clinical settings

    Using DNA sequencing data to quantify T cell fraction and therapy response

    No full text
    The immune microenvironment influences tumour evolution and can be both prognostic and predict response to immunotherapy1,2. However, measurements of tumour infiltrating lymphocytes (TILs) are limited by a shortage of appropriate data. Whole-exome sequencing (WES) of DNA is frequently performed to calculate tumour mutational burden and identify actionable mutations. Here we develop T cell exome TREC tool (T cell ExTRECT), a method for estimation of T cell fraction from WES samples using a signal from T cell receptor excision circle (TREC) loss during V(D)J recombination of the T cell receptor-α gene (TCRA (also known as TRA)). TCRA T cell fraction correlates with orthogonal TIL estimates and is agnostic to sample type. Blood TCRA T cell fraction is higher in females than in males and correlates with both tumour immune infiltrate and presence of bacterial sequencing reads. Tumour TCRA T cell fraction is prognostic in lung adenocarcinoma. Using a meta-analysis of tumours treated with immunotherapy, we show that tumour TCRA T cell fraction predicts immunotherapy response, providing value beyond measuring tumour mutational burden. Applying T cell ExTRECT to a multi-sample pan-cancer cohort reveals a high diversity of the degree of immune infiltration within tumours. Subclonal loss of 12q24.31–32, encompassing SPPL3, is associated with reduced TCRA T cell fraction. T cell ExTRECT provides a cost-effective technique to characterize immune infiltrate alongside somatic changes.</p
    corecore