18 research outputs found
Impact of CIR Storms on Thermosphere Density Variability during the Solar Minimum of 2008
The solar minimum of 2008 was exceptionally quiet, with sunspot numbers at
their lowest in 75 years. During this unique solar minimum epoch, however,
solar wind high - speed streams emanating from near-equatorial coronal holes
occurred frequently and were the primary contributor to the recurrent
geomagnetic activity at Earth. These conditions enabled the isolation of
forcing by geomagnetic activity on the preconditioned solar minimum state of
the upper atmosphere caused by Corotating Interaction Regions (CIRs).
Thermosphere density observations around 400 km from the CHAMP satellite are
used to study the thermosphere density response to solar wind high - speed
streams/CIRs. Superposed epoch results show that thermosphere density responds
to high - speed streams globally, and the density at 400 km changes by 75% on
average. The relative changes of neutral density are comparable at different
latitudes, although its variability is largest at high latitudes. In addition,
the response of thermosphere density to high - speed streams is larger at night
than in daytime, indicating the preconditioning effect of the thermosphere
response to storms. Finally, the thermosphere density variations at the periods
of 9 and 13.5 days associated with CIRs are linked to the spatial distribution
of low - middle latitude coronal holes on the basis of the EUVI observations
from the STEREO.Comment: Solar Physics, accepted, April 2010, and the final version of this
paper will appear in the website of Solar Physics soon
Origins of the Ambient Solar Wind: Implications for Space Weather
The Sun's outer atmosphere is heated to temperatures of millions of degrees,
and solar plasma flows out into interplanetary space at supersonic speeds. This
paper reviews our current understanding of these interrelated problems: coronal
heating and the acceleration of the ambient solar wind. We also discuss where
the community stands in its ability to forecast how variations in the solar
wind (i.e., fast and slow wind streams) impact the Earth. Although the last few
decades have seen significant progress in observations and modeling, we still
do not have a complete understanding of the relevant physical processes, nor do
we have a quantitatively precise census of which coronal structures contribute
to specific types of solar wind. Fast streams are known to be connected to the
central regions of large coronal holes. Slow streams, however, appear to come
from a wide range of sources, including streamers, pseudostreamers, coronal
loops, active regions, and coronal hole boundaries. Complicating our
understanding even more is the fact that processes such as turbulence,
stream-stream interactions, and Coulomb collisions can make it difficult to
unambiguously map a parcel measured at 1 AU back down to its coronal source. We
also review recent progress -- in theoretical modeling, observational data
analysis, and forecasting techniques that sit at the interface between data and
theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue
connected with a 2016 ISSI workshop on "The Scientific Foundations of Space
Weather." 44 pages, 9 figure