17 research outputs found

    In situ bio/chemical characterization of Venus cloud particles using Life-signature Detection Microscope for Venus (Venus LDM)

    No full text
    Much of the information about the size and shape of aerosols forming haze and the cloud layer of Venus is obtained from indirect inferences from nephelometers on probes and from analysis of the variation of polarization with the phase angle and the glory feature from images of Venus. Microscopic imaging of Venus’ aerosols has been advocated recently. Direct measurements from a fluorescence microscope can provide information on the morphology, density, and biochemical characteristics of the particles; thus, the fluorescence microscope is attractive for the in situ particle characterization of Venus’ cloud layer. Fluorescence imaging of Venus’ cloud particles presents several challenges due to the sulfuric acid composition and the corrosive effects. In this article, we identify the challenges and describe our approach to overcoming them for a fluorescence microscope based on an in situ bio/chemical and physical characterization instrument for use in the clouds of Venus from a suitable aerial platform. We report that a pH adjustment using alkali was effective for obtaining fluorescence images, and that fluorescence attenuation was observed after the adjustment, even when the acidophile suspension in the concentrated sulfuric acid was used as a sample.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
    corecore