119 research outputs found

    Enhanced resistance to bacterial and fungal pathogens by overexpression of a human cathelicidin antimicrobial peptide (hCAP18/LL-37) in Chinese cabbage

    Get PDF
    The human cathelicidin antimicrobial protein hCAP18, which includes the C-terminal peptide LL-37, is a multifunctional protein. As a possible approach to enhancing the resistance to plant disease, a DNA fragment coding for hCAP18/LL-37 was fused at the C-terminal end of the leader sequence of endopolygalacturonase-inhibiting protein under the control of the cauliflower mosaic virus 35S promoter region. The construct was then introduced into Brassica rapa. LL-37 expression was confirmed in transgenic plants by reverse transcription-polymerase chain reaction and western blot analysis. Transgenic plants exhibited varying levels of resistance to bacterial and fungal pathogens. The average size of disease lesions in the transgenic plants was reduced to less than half of that in wild-type plants. Our results suggest that the antimicrobial LL-37 peptide is involved in wide-spectrum resistance to bacterial and fungal pathogen infection

    Seasonality in depressive and anxiety symptoms among primary care patients and in patients with depressive and anxiety disorders; results from the Netherlands Study of Depression and Anxiety

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little is known about seasonality of specific depressive symptoms and anxiety symptoms in different patient populations. This study aims to assess seasonal variation of depressive and anxiety symptoms in a primary care population and across participants who were classified in diagnostic groups 1) healthy controls 2) patients with a major depressive disorder, 3) patients with any anxiety disorder and 4) patients with a major depression and any anxiety disorder.</p> <p>Methods</p> <p>Data were used from the Netherlands Study of Depression and Anxiety (NESDA). First, in 5549 patients from the NESDA primary care recruitment population the Kessler-10 screening questionnaire was used and data were analyzed across season in a multilevel linear model. Second, in 1090 subjects classified into four groups according to psychiatric status according to the Composite International Diagnostic Interview, overall depressive symptoms and atypical versus melancholic features were assessed with the Inventory of Depressive Symptoms. Anxiety and fear were assessed with the Beck Anxiety Inventory and the Fear questionnaire. Symptom levels across season were analyzed in a linear regression model.</p> <p>Results</p> <p>In the primary care population the severity of depressive and anxiety symptoms did not show a seasonal pattern. In the diagnostic groups healthy controls and patients with any anxiety disorder, but not patients with a major depressive disorder, showed a small rise in depressive symptoms in winter. Atypical and melancholic symptoms were both elevated in winter. No seasonal pattern for anxiety symptoms was found. There was a small gender related seasonal effect for fear symptoms.</p> <p>Conclusions</p> <p>Seasonal differences in severity or type of depressive and anxiety symptoms, as measured with a general screening instrument and symptom questionnaires, were absent or small in effect size in a primary care population and in patient populations with a major depressive disorder and anxiety disorders.</p

    Neural Circuitry of Emotional and Cognitive Conflict Revealed through Facial Expressions

    Get PDF
    Neural systems underlying conflict processing have been well studied in the cognitive realm, but the extent to which these overlap with those underlying emotional conflict processing remains unclear. A novel adaptation of the AX Continuous Performance Task (AX-CPT), a stimulus-response incompatibility paradigm, was examined that permits close comparison of emotional and cognitive conflict conditions, through the use of affectively-valenced facial expressions as the response modality.Brain activity was monitored with functional magnetic resonance imaging (fMRI) during performance of the emotional AX-CPT. Emotional conflict was manipulated on a trial-by-trial basis, by requiring contextually pre-cued facial expressions to emotional probe stimuli (IAPS images) that were either affectively compatible (low-conflict) or incompatible (high-conflict). The emotion condition was contrasted against a matched cognitive condition that was identical in all respects, except that probe stimuli were emotionally neutral. Components of the brain cognitive control network, including dorsal anterior cingulate cortex (ACC) and lateral prefrontal cortex (PFC), showed conflict-related activation increases in both conditions, but with higher activity during emotion conditions. In contrast, emotion conflict effects were not found in regions associated with affective processing, such as rostral ACC.These activation patterns provide evidence for a domain-general neural system that is active for both emotional and cognitive conflict processing. In line with previous behavioural evidence, greatest activity in these brain regions occurred when both emotional and cognitive influences additively combined to produce increased interference

    Perspectives of San Juan healthcare practitioners on the detection deficit in oral premalignant and early cancers in Puerto Rico: a qualitative research study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Puerto Rico, relative to the United States, a disparity exists in detecting oral precancers and early cancers. To identify factors leading to the deficit in early detection, we obtained the perspectives of San Juan healthcare practitioners whose practice could be involved in the detection of such oral lesions.</p> <p>Methods</p> <p>Key informant (KI) interviews were conducted with ten clinicians practicing in or around San Juan, Puerto Rico. We then triangulated our KI interview findings with other data sources, including recent literature on oral cancer detection from various geographic areas, current curricula at the University of Puerto Rico Schools of Medicine and Dental Medicine, as well as local health insurance regulations.</p> <p>Results</p> <p>Key informant-identified factors that likely contribute to the detection deficit include: many practitioners are deficient in knowledge regarding oral cancer and precancer; oral cancer screening examinations are limited regarding which patients receive them and the elements included. In Puerto Rico, specialists generally perform oral biopsies, and patient referral can be delayed by various factors, including government-subsidized health insurance, often referred to as Reforma. Reforma-based issues include often inadequate clinician knowledge regarding Reforma requirements/provisions, diagnostic delays related to Reforma bureaucracy, and among primary physicians, a perceived financial disincentive in referring Reforma patients.</p> <p>Conclusions</p> <p>Addressing these issues may be useful in reducing the deficit in detecting oral precancers and early oral cancer in Puerto Rico.</p

    Constraints on black-hole charges with the 2017 EHT observations of M87*

    Get PDF
    Our understanding of strong gravity near supermassive compact objects has recently improved thanks to the measurements made by the Event Horizon Telescope (EHT). We use here the M87* shadow size to infer constraints on the physical charges of a large variety of nonrotating or rotating black holes. For example, we show that the quality of the measurements is already sufficient to rule out that M87* is a highly charged dilaton black hole. Similarly, when considering black holes with two physical and independent charges, we are able to exclude considerable regions of the space of parameters for the doubly-charged dilaton and the Sen black holes

    First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon

    Get PDF
    Event Horizon Telescope (EHT) observations at 230 GHz have now imaged polarized emission around the supermassive black hole in M87 on event-horizon scales. This polarized synchrotron radiation probes the structure of magnetic fields and the plasma properties near the black hole. Here we compare the resolved polarization structure observed by the EHT, along with simultaneous unresolved observations with the Atacama Large Millimeter/submillimeter Array, to expectations from theoretical models. The low fractional linear polarization in the resolved image suggests that the polarization is scrambled on scales smaller than the EHT beam, which we attribute to Faraday rotation internal to the emission region. We estimate the average density n_{e} ~ 10^{4–7} cm^{−3}, magnetic field strength B ~ 1–30 G, and electron temperature T_{e} ~ (1–12) × 10^{10} K of the radiating plasma in a simple one-zone emission model. We show that the net azimuthal linear polarization pattern may result from organized, poloidal magnetic fields in the emission region. In a quantitative comparison with a large library of simulated polarimetric images from general relativistic magnetohydrodynamic (GRMHD) simulations, we identify a subset of physical models that can explain critical features of the polarimetric EHT observations while producing a relativistic jet of sufficient power. The consistent GRMHD models are all of magnetically arrested accretion disks, where near-horizon magnetic fields are dynamically important. We use the models to infer a mass accretion rate onto the black hole in M87 of (3–20) × 10^{−4} M⊙ yr^{−1}

    The Polarized Image of a Synchrotron-emitting Ring of Gas Orbiting a Black Hole

    Get PDF
    Synchrotron radiation from hot gas near a black hole results in a polarized image. The image polarization is determined by effects including the orientation of the magnetic field in the emitting region, relativistic motion of the gas, strong gravitational lensing by the black hole, and parallel transport in the curved spacetime. We explore these effects using a simple model of an axisymmetric, equatorial accretion disk around a Schwarzschild black hole. By using an approximate expression for the null geodesics derived by Beloborodov and conservation of the Walker–Penrose constant, we provide analytic estimates for the image polarization. We test this model using currently favored general relativistic magnetohydrodynamic simulations of M87*, using ring parameters given by the simulations. For a subset of these with modest Faraday effects, we show that the ring model broadly reproduces the polarimetric image morphology. Our model also predicts the polarization evolution for compact flaring regions, such as those observed from Sgr A* with GRAVITY. With suitably chosen parameters, our simple model can reproduce the EVPA pattern and relative polarized intensity in Event Horizon Telescope images of M87*. Under the physically motivated assumption that the magnetic field trails the fluid velocity, this comparison is consistent with the clockwise rotation inferred from total intensity images

    Polarimetric Properties of Event Horizon Telescope Targets from ALMA

    Get PDF
    We present the results from a full polarization study carried out with the Atacama Large Millimeter/submillimeter Array (ALMA) during the first Very Long Baseline Interferometry (VLBI) campaign, which was conducted in 2017 April in the λ3 mm and λ1.3 mm bands, in concert with the Global mm-VLBI Array (GMVA) and the Event Horizon Telescope (EHT), respectively. We determine the polarization and Faraday properties of all VLBI targets, including Sgr A*, M87, and a dozen radio-loud active galactic nuclei (AGNs), in the two bands at several epochs in a time window of 10 days. We detect high linear polarization fractions (2%–15%) and large rotation measures (RM > 10^{3.3}–10^{5.5} rad m^{−2}), confirming the trends of previous AGN studies at millimeter wavelengths. We find that blazars are more strongly polarized than other AGNs in the sample, while exhibiting (on average) order-of-magnitude lower RM values, consistent with the AGN viewing angle unification scheme. For Sgr A* we report a mean RM of (−4.2 ± 0.3) × 10^{5} rad m^{−2} at 1.3 mm, consistent with measurements over the past decade and, for the first time, an RM of (–2.1 ± 0.1) × 10^{5} rad m^{−2} at 3 mm, suggesting that about half of the Faraday rotation at 1.3 mm may occur between the 3 mm photosphere and the 1.3 mm source. We also report the first unambiguous measurement of RM toward the M87 nucleus at millimeter wavelengths, which undergoes significant changes in magnitude and sign reversals on a one year timescale, spanning the range from −1.2 to 0.3 × 10^{5} rad m^{−2} at 3 mm and −4.1 to 1.5 × 10^{5} rad m^{−2} at 1.3 mm. Given this time variability, we argue that, unlike the case of Sgr A*, the RM in M87 does not provide an accurate estimate of the mass accretion rate onto the black hole. We put forward a two-component model, comprised of a variable compact region and a static extended region, that can simultaneously explain the polarimetric properties observed by both the EHT (on horizon scales) and ALMA (which observes the combined emission from both components). These measurements provide critical constraints for the calibration, analysis, and interpretation of simultaneously obtained VLBI data with the EHT and GMVA
    corecore