113 research outputs found
Western Pacific atmospheric nutrient deposition fluxes, their impact on surface ocean productivity
The atmospheric deposition of both macronutrients and micronutrients plays an important role in driving primary productivity, particularly in the low-latitude ocean. We report aerosol major ion measurements for five ship-based sampling campaigns in the western Pacific from similar to 25 degrees N to 20 degrees S and compare the results with those from Atlantic meridional transects (similar to 50 degrees N to 50 degrees S) with aerosols collected and analyzed in the same laboratory, allowing full incomparability. We discuss sources of the main nutrient species (nitrogen (N), phosphorus (P), and iron (Fe)) in the aerosols and their stoichiometry. Striking north-south gradients are evident over both basins with the Northern Hemisphere more impacted by terrestrial dust sources and anthropogenic emissions and the North Atlantic apparently more impacted than the North Pacific. We estimate the atmospheric supply rates of these nutrients and the potential impact of the atmospheric deposition on the tropical western Pacific. Our results suggest that the atmospheric deposition is P deficient relative to the needs of the resident phytoplankton. These findings suggest that atmospheric supply of N, Fe, and P increases primary productivity utilizing some of the residual excess phosphorus (P*) in the surface waters to compensate for aerosol P deficiency. Regional primary productivity is further enhanced via the stimulation of nitrogen fixation fuelled by the residual atmospheric iron and P*. Our stoichiometric calculations reveal that a P* of 0.1 mu mol L-1 can offset the P deficiency in atmospheric supply for many months. This study suggests that atmospheric deposition may sustain similar to 10% of primary production in both the western tropical Pacific
Seasonal ITCZ migration dynamically controls the location of the (sub)tropical Atlantic biogeochemical divide
Inorganic nitrogen depletion restricts productivity in much of the low-latitude oceans, generating a selective advantage for diazotrophic organisms capable of fixing atmospheric dinitrogen (N2). However, the abundance and activity of diazotrophs can in turn be controlled by the availability of other potentially limiting nutrients, including phosphorus (P) and iron (Fe). Here we present
high-resolution data (∼0.3°) for dissolved iron, aluminum, and inorganic phosphorus that confirm the existence of a sharp north–south biogeochemical boundary in the surface nutrient concentrations of the (sub)tropical Atlantic Ocean. Combining satellite-based precipitation data with results from a previous study, we here demonstrate that wet deposition in the region of the intertropical convergence zone acts as the major dissolved iron source to surface waters. Moreover, corresponding observations of N2 fixation and the distribution of diazotrophic Trichodesmium spp. indicate that movement in the region of elevated dissolved iron as a result of the seasonal migration of the intertropical convergence zone drives a shift in the latitudinal distribution of diazotrophy and corresponding dissolved inorganic phosphorus depletion. These conclusions are consistent with the results of an idealized numerical
model of the system. The boundary between the distinct biogeochemical systems of the (sub)tropical Atlantic thus appears to be defined by the diazotrophic response to spatial–temporal variability in external Fe inputs. Consequently, in addition to demonstrating a unique seasonal cycle forced by atmospheric nutrient inputs, we suggest that the underlying biogeochemical mechanisms would likely characterize the response of oligotrophic systems to altered environmental forcing over longer timescales
Abundances of Iron-Binding Photosynthetic and Nitrogen-Fixing Proteins of Trichodesmium Both in Culture and In Situ from the North Atlantic
Marine cyanobacteria of the genus Trichodesmium occur throughout the oligotrophic tropical and subtropical oceans, where they can dominate the diazotrophic community in regions with high inputs of the trace metal iron (Fe). Iron is necessary for the functionality of enzymes involved in the processes of both photosynthesis and nitrogen fixation. We combined laboratory and field-based quantifications of the absolute concentrations of key enzymes involved in both photosynthesis and nitrogen fixation to determine how Trichodesmium allocates resources to these processes. We determined that protein level responses of Trichodesmium to iron-starvation involve down-regulation of the nitrogen fixation apparatus. In contrast, the photosynthetic apparatus is largely maintained, although re-arrangements do occur, including accumulation of the iron-stress-induced chlorophyll-binding protein IsiA. Data from natural populations of Trichodesmium spp. collected in the North Atlantic demonstrated a protein profile similar to iron-starved Trichodesmium in culture, suggestive of acclimation towards a minimal iron requirement even within an oceanic region receiving a high iron-flux. Estimates of cellular metabolic iron requirements are consistent with the availability of this trace metal playing a major role in restricting the biomass and activity of Trichodesmium throughout much of the subtropical ocean
Iron Deficiency Increases Growth and Nitrogen-Fixation Rates of Phosphorus-Deficient Marine Cyanobacteria
Marine dinitrogen (N2)-fixing cyanobacteria have large impacts on global biogeochemistry as they fix carbon dioxide (CO2) and fertilize oligotrophic ocean waters with new nitrogen. Iron (Fe) and phosphorus (P) are the two most important limiting nutrients for marine biological N2 fixation, and their availabilities vary between major ocean basins and regions. A long-standing question concerns the ability of two globally dominant N2-fixing cyanobacteria, unicellular Crocosphaera and filamentous Trichodesmium, to maintain relatively high N2-fixation rates in these regimes where both Fe and P are typically scarce. We show that under P-deficient conditions, cultures of these two cyanobacteria are able to grow and fix N2 faster when Fe deficient than when Fe replete. In addition, growth affinities relative to P increase while minimum concentrations of P that support growth decrease at low Fe concentrations. In Crocosphaera, this effect is accompanied by a reduction in cell sizes and elemental quotas. Relatively high growth rates of these two biogeochemically critical cyanobacteria in low-P, low-Fe environments such as those that characterize much of the oligotrophic ocean challenge the common assumption that low Fe levels can have only negative effects on marine primary producers. The closely interdependent influence of Fe and P on N2-fixing cyanobacteria suggests that even subtle shifts in their supply ratio in the past, present and future oceans could have large consequences for global carbon and nitrogen cycles
Combining autocracy and majority voting: the canonical succession rules of the Latin Church
The autocratic turn of the Latin Church in the XI-XIII century, a reaction to the secular power interferences, concentrated the decision-making power in the hands of the top hierarchy, and finally in the hands of the pope. A fundamental step was the change and the constitutionalisation of the procedures for leadership replacement, which were open successions where the contest for power was governed by elections. The autocratic reform limited the active electorate to the clergy only and gradually substituted the episcopal elections by the pope’s direct appointment. Besides, the voting rules changed from unanimity to the dual principle of maioritas et sanioritas (where the majority was identified with the greater part by number and wisdom) and finally to the numerical rule of qualified majority. This evolution aimed at preserving the elections from external interferences and at eliminating the elements of arbitrariness. The most important succession, the papal election, was protected by institutionalising a selectorate and its decision-making rules. The selectorate and the elections did not insert accountability and representation mechanisms but only protected the quality of the autocratic leadership and its autonomy
Global-scale variations of the ratios of carbon to phosphorus in exported marine organic matter
The ratio of carbon (C) to phosphorus (P) in marine phytoplankton is thought to be constant throughout the worlds'oceans. Known as the Redfield ratio, this relationship describes the links between carbon and phosphorus cycling and marine ecosystems. However, variations in the stoichiometry of phytoplankton have recently been identified, in particular strong latitudinal variability. Here we assess the impact of this variability in the C:P ratio of biomass on the C:P ratio of organic matter that is exported to the deep ocean using a biogeochemical inverse-model based on a data-constrained ocean circulation model and a global database of dissolved inorganic carbon and phosphate measurements. We identify global patterns of variability in the C:P ratios of exported organic matter, with higher values in the nutrient-depleted subtropical gyres, where organic matter export is relatively low, and lower ratios in nutrient-rich upwelling zones and high-latitude regions, where organic matter export is high. This suggests that total carbon export is relatively constant throughout the oceans, in agreement with recent estimates of carbon fluxes. We conclude that the latitudinal patterns of C:P in exported organic matter are consistent with the large-scale stoichiometric variations in phytoplankton C:P. We suggest that a future expansion of nutrient-depleted waters could result in a shift to more efficient C export that compensates for the expected decline in productivity
Effects of nutrient enrichment on surface microbial community gene expression in the oligotrophic North Pacific Subtropical Gyre
Marine microbial communities are critical for biogeochemical cycles and the productivity of ocean ecosystems. Primary productivity in the surface ocean is constrained by nutrients which in part are supplied by mixing with deeper water. Little is known about the time scales, frequency, or impact of mixing on microbial communities. We combined in situ sampling using the Environmental Sample Processor and a small-scale mixing experiment with lower euphotic zone water to determine how individual populations respond to mixing. Transcriptional responses were measured using the MicroTOOLs (Microbiological Targets for Ocean Observing Laboratories) microarray, which targets all three domains of life and viruses. The experiment showed that mixing substantially affects photosynthetic taxa as expected, but surprisingly also showed that populations respond differently to unfiltered deep water which contains particles (organisms and detritus) compared to filtered deep water that only contains nutrients and viruses, pointing to the impact of biological interactions associated with these events. Comparison between experimental and in situ population transcription patterns indicated that manipulated populations can serve as analogs for natural populations, and that natural populations may be frequently or continuously responding to nutrients from deeper waters. Finally, this study also shows that the microarray approach, which is complementary to metatranscriptomic sequencing, is useful for determining the physiological status of in situ microbial communities
Numerical investigation of cyclic variations in gasoline engines using a hybrid URANS/LES modeling approach
Cycle to cycle variations are an important aspect in the development and optimization process of internal combustion engines. In this study the feasibility of using a detached eddy simulation (DES) SST model, which is a hybrid URANS/LES model, to predict cycle to cycle variations is investigated. In the near wall region or in regions where the grid resolution is not sufficiently fine to resolve smaller structures, the two-equation RANS shear-stress transport (SST) model is used. In the other regions with higher grid resolution an LES model is applied. First, the numerical requirements associated with the hybrid URANS/LES and the employed solver are studied in detail. The numerical dissipation of the spatial scheme and the choice of the temporal scheme including the step size are evaluated. In addition, the accuracy of the solver for moving meshes, which are required for engine calculations, is assessed. The modeling constant linking the grid size to the DES filter length scale is determined by calculating a decaying homogeneous isotropic turbulence test case for different grid resolutions. The final applications of the model are two different engine cases with increasing complexity. The first case is the statistically stationary flow through an engine intake port. The time resolved flow structure predicted by the DES SST model is analyzed and the resulting time-averaged velocity fields are compared to experimental data at different locations. The second application is a motored multi-cycle simulation of a series production engine. The instantaneous flow development during the intake and compression stroke of one single cycle is studied and the ensemble-averaged and the instantaneous velocity fields as well as the resolved velocity fluctuations are compared to optical measurements. Special emphasis is placed on the cyclic differences of the velocity fluctuations at the time of ignition in the vicinity of the spark plug and the expected influence on the combustion process. 2009 Elsevier Ltd. All rights reserved
Detached eddy simulation of cyclic large scale fluctuations in a simplified engine setup
Computational Fluid Dynamics using RANS-based modelling approaches have become an important tool in the internal combustion engine development and optimization process. However, these models cannot resolve cycle to cycle variations, which are an important aspect in the design of new combustion systems. In this study the feasibility of using a Detached Eddy Simulation (DES) SST model, which is a hybrid RANS/LES model, to predict cycle to cycle variations is investigated. In the near wall region or in regions where the grid resolution is not sufficiently fine to resolve smaller structures, the two-equation RANS SST model is used. In the other regions with higher grid resolution an LES model is applied. The case considered is a geometrically simplified engine, for which detailed experimental data for the ensemble averaged and single cycle velocity field are available from Boree et al. Boree, J., Maurel, S., Bazile, R., 2002. Disruption of a compressed vortex, Physics of Fluids 14 (7), 2543-2556. The fluid flow shows a strong tumbling motion, which is a major characteristic for modern turbo-charged, direct-injection gasoline engines. The general flow structure is analyzed first and the extent of the LES region and the amount of resolved fluctuations are discussed. Multiple consecutive cycles are computed and turbulent statistics of DES SST, URANS and the measured velocity field are compared for different piston positions. Cycle to cycle variations of the velocity field are analyzed for both computation and experiment with a special emphasis on the useability of the DES SST model to predict cyclic variations. 2008 Elsevier Inc. All rights reserved
Hybrid URANS/LES turbulence simulation of vortex shedding behind a triangular flameholder
In this study a detached eddy simulation (DES) model, which belongs to the group of hybrid URANS/LES turbulence models, is used for the simulation of vortex shedding behind a triangular obstacle. In the near wall region or in regions where the grid resolution is not sufficiently fine to resolve smaller structures, the two-equation RANS shear-stress transport (SST) model is used. In the other regions with higher grid resolution a LES model, which uses a transport equation for the turbulent subgrid energy, is applied. The DES model is first investigated for two standard test cases, namely decaying homogeneous isotropic turbulence and the backward facing step, respectively. For the decaying homogeneous isotropic turbulence test case the evolution of the energy spectra in wavenumber space for different times are studied for both the DES and a Smagorinsky type LES model. Different grid resolutions are analyzed with a special emphasis on the modeling constant connecting the filter length scale to the grid size. The results are compared to experimental data. The backward facing step test case is used to study the model behavior for a case with a transition region between a RANS modeling approach close to the wall and LES based modeling in the intense shear flow region. The final application is the simulation of the vortex shedding behind a triangular obstacle. First, the influence of the inlet condition formulation is studied in detail as they can have a significant influence especially for LES based models. Detailed comparisons between simulation and experiment for the flow structure past the obstacle and statistical quantities such as the shedding frequency are shown. Finally the additional temporal and spatial information provided by the DES model is used to show the predicted anisotropy of turbulence. 2008 Springer Science+Business Media B.V
- …