12 research outputs found

    Fish drug analysis—Phish-pharm: A searchable database of pharmacokinetics data in fish

    No full text
    Information about drug residues and pharmacokinetic parameters in aquatic species is relatively sparse. In addition, it is difficult to rapidly compare data between studies due to differences in experimental conditions, such as water temperatures and salinity. To facilitate the study of aquatic species drug metabolism, we constructed a Fish Drug/Chemical Analysis Phish-Pharm (FDA-PP) database. This database consists of more than 400 articles that include data from 90 species (64 genera) of fish. Data fields include genus, species, water temperatures, the average animal weight, sample types analyzed, drug (or chemical) name, dosage, route of administration, metabolites identified, method of analysis, protein binding, clearance, volume of distribution in a central compartment (Vc) or volume of distribution at steady-state (Vd), and drug half-lives (t1/2). Additional fields list the citation, authors, title, and Internet links. The document will be periodically updated, and users are invited to submit additional data. Updates will be announced in future issues ofThe AAPS Journal. This database will be a valuable resource to investigators of drug metabolism in aquatic species as well as government and private organizations involved in the drug approval process for aquatic species

    Prefrontal Cortical Changes Following Cognitive Training in Patients with Chronic Schizophrenia: Effects of Practice, Generalization, and Specificity

    No full text
    Cognitive training is increasingly used in the treatment of schizophrenia, but it remains unknown how this training affects functional neuroanatomy. Practice on specific cognitive tasks generally leads to automaticity and decreased prefrontal cortical activity, yet broad-based cognitive training programs may avoid automaticity and increase prefrontal cortex (PFC) activity. This study used quasi-randomized, placebo-control design and pre/post neuroimaging to examine functional plasticity associated with attention and working memory-focused cognitive training in patients with schizophrenia. Twenty-one participants with schizophrenia or schizoaffective disorder split into two demographically and performance matched groups (nine scanned per group) and nine control participants were tested 6–8 weeks apart. Compared with both patient controls and healthy controls, patients receiving cognitive training increased activation significantly more in attention and working memory networks, including dorsolateral prefrontal cortex, anterior cingulate and frontopolar cortex. The extent to which activity increased in a subset of these regions predicted performance improvements. Although this study was not designed to speak to the efficacy of cognitive training as a treatment, it is the first study to show that such training can increase the ability of patients to activate the PFC regions subserving attention and working memory
    corecore