4 research outputs found

    Biophysical characterization and unfolding of LEF4 factor of RNA polymerase from AcNPV

    No full text
    Late expression factor 4 (LEF4) is one of the four subunits of Autographa californica nuclear polyhedrosis virus (AcNPV) RNA polymerase. LEF4 was overexpressed in Escherichia coli and recombinant protein was subjected to structural characterization. Chemical induced unfolding of LEF4 was investigated using intrinsic fluorescence, hydrophobic dye binding, fluorescence quenching, and circular dichroism (CD) techniques. The unfolding of LEF4 was found to be a non-two state, biphasic transition. Intermediate states of LEF4 at 2M GnHCl and 4M urea shared some common structural features and hence may lie on the same pathway of protein folding. Steady-state fluorescence and far-UV CD showed that while there was considerable shift in the wavelength of emission maximum (λmax), the secondary structure of LEF4 intermediates at 2M GnHCl and 4M urea remained intact. Further, temperature induced denaturation of LEF4 was monitored using far-UV CD. This study points to the structural stability of LEF4 under the influence of denaturants like urea and temperature. Although LEF4 is an interesting model protein to study protein folding intermediates, in terms of functional significance the robust nature of this protein might reflect one of the several strategies adapted by the virus to survive under very adverse environmental and physiological conditions

    Expression, purification and ligand binding properties of the recombinant translation initiation factor (PeIF5B) from Pisum sativum

    No full text
    Gene encoding a novel translation initiation factor PeIF5B from Pisum sativum with sequence similarity to eIF5B from H. sapiens, D. melanogaster, S. cerevisiae as well as archaeal aIF5B from M. thermoautotrophicum was earlier reported by us. We now describe the expression and purification of 96 kDa recombinant PeIF5B (rPeIF5B) protein. Using fluorescence and circular dichroism spectra analyses, we show that Mg2+ binding does not lead to any change in PeIF5B aromatic amino acid micro-environment, whereas GTP binding induces significant changes in the local environment of the aromatic amino acids. However, the protein undergoes changes in secondary structure upon metal ion and nucleotide binding. Charged initiator tRNA binding to PeIF5B is found to be cofactor dependent. PeIF5B binds to GTP in vitro as evident from autoradiography. Based on homology modeling of the catalytic domain of PeIF5B, we could confirm the conformational changes in PeIF5B following ligand binding
    corecore