33 research outputs found
Studies on Shokyo, Kanzo, and Keihi in Kakkonto Medicine on Prostaglandin E2 Production in Lipopolysaccharide-Treated Human Gingival Fibroblasts
We previously demonstrated that a kampo medicine, kakkonto, decreases lipopolysaccharide- (LPS-) induced prostaglandin E2 (PGE2) production by human gingival fibroblasts. In this study, we examined the herbs constituting kakkonto that exhibit this effect. Shokyo strongly and concentration dependently and kanzo and keihi moderately decreased LPS-induced PGE2 production. Shokyo did not alter cyclooxygenase-2 (COX-2) activity, cytosolic phospholipaseA2 (cPLA2), annexin 1 and COX-2 expression, and LPS-induced extracellular signal-regulated kinase (ERK) phosphorylation. Kanzo inhibited COX-2 activity but increased annexin 1 and COX-2 expression and did not alter LPS-induced ERK phosphorylation. Keihi inhibited COX-2 activity and LPS-induced ERK phosphorylation but slightly increased COX-2 expression and did not alter cPLA2 and annexin 1 expression. These results suggest that the mechanism of shokyo is through the inhibition of cPLA2 activity, and that of kanzo and keihi is through the inhibition of COX-2 activity and indirect inhibition of cPLA2 activity.Therefore, it is possible that shokyo and kakkonto are clinically useful for the improvement of inflammatory responses
Neuroprotective Effects of Metallothionein Against Rotenone-Induced Myenteric Neurodegeneration in Parkinsonian Mice
Parkinson's disease (PD) is a neurodegenerative disease with motor symptoms as well as non-motor symptoms that precede the onset of motor symptoms. Mitochondrial complex I inhibitor, rotenone, has been widely used to reproduce PD pathology in the central nervous system (CNS) and enteric nervous system (ENS). We reported previously that metallothioneins (MTs) released from astrocytes can protect dopaminergic neurons against oxidative stress. The present study examined the changes in MT expression by chronic systemic rotenone administration in the striatum and colonic myenteric plexus of C57BL mice. In addition, we investigated the effects of MT depletion on rotenone-induced neurodegeneration in CNS and ENS using MT-1 and MT-2 knockout (MT KO) mice, or using primary cultured neurons from MT KO mice. In normal C57BL mice, subcutaneous administration of rotenone for 6 weeks caused neurodegeneration, increased MT expression with astrocytes activation in the striatum and myenteric plexus. MT KO mice showed more severe myenteric neuronal damage by rotenone administration after 4 weeks than wild-type mice, accompanied by reduced astroglial activation. In primary cultured mesencephalic neurons from MT KO mice, rotenone exposure induced neurotoxicity in dopaminergic neurons, which was complemented by addition of recombinant protein. The present results suggest that MT seems to provide protection against neurodegeneration in ENS of rotenone-induced PD model mice
Protective effects of metallothionein against dopamine quinone-induced dopaminergic neurotoxicity
AbstractDopamine (DA) quinone as DA neuron-specific oxidative stress conjugates with cysteine residues in functional proteins to form quinoproteins. Here, we examined the effects of cysteine-rich metal-binding proteins, metallothionein (MT)-1 and -2, on DA quinone-induced neurotoxicity. MT quenched DA semiquinones in vitro. In dopaminergic cells, DA exposure increased quinoproteins and decreased cell viability; these were ameliorated by pretreatment with MT-inducer zinc. Repeated L-DOPA administration markedly elevated striatal quinoprotein levels and reduced the DA nerve terminals specifically on the lesioned side in MT-knockout parkinsonian mice, but not in wild-type mice. Our results suggested that intrinsic MT protects against L-DOPA-induced DA quinone neurotoxicity in parkinsonian mice by its quinone-quenching property
Localization, regulation, and function of metallothionein-III/growth inhibitory factor in the brain.
The metallothionein (MT) family is a class of low molecular, intracellular, and cysteine-rich proteins with a high affinity for metals. Although the first of these proteins was discovered nearly 40 years ago, their functional significance remains obscure. Four major isoforms (MT-I, MT-II, MT-III, and MT-IV) have been identified in mammals. MT-I and MT-II are ubiquitously expressed in various organs including the brain, while expression of MT-III and MT-IV is restricted in specific organs. MT-III was detected predominantly in the brain, and characterized as a central nervous system-specific isomer. The role of MTs in the central nervous system has become an intense focus of scientific research. An isomer of MTs, MT-III, of particular interest, was originally discovered as a growth inhibitory factor, and has been found to be markedly reduced in the brain of patients with Alzheimer's disease and several other neurodegenerative diseases. MT-III fulfills unique biological roles in homeostasis of the central nervous system and in the etiology of neuropathological disorders.</p
A reporter system evaluates tumorigenesis, metastasis, β-catenin/MMP regulation, and druggability
Cancer invasion, metastasis, and therapy resistance are the crucial phenomena in cancer malignancy. The high-expression of matrix metalloproteinase 9 (MMP9) is a biomarker as well as a causal factor of cancer invasiveness and metastatic activity. However, a regulatory mechanism underlying MMP9 expression in cancer is not clarified yet. Additionally, a new strategy for anti-cancer drug discovery is becoming an important clue. In the present study, we aimed (i) to develop a novel reporter system evaluating tumorigenesis, invasiveness, metastasis, and druggability with a combination of three-dimensional (3D) tumoroid model and Mmp9 promoter and (ii) to examine pharmacological actions of anti-cancer medications using this reporter system. High expression and genetic amplification of MMP9 were found in colon cancer cases. We found that proximal promoter sequences of MMP9 in murine and human contained conserved binding sites for transcription factors β-catenin/TCF/LEF, glucocorticoid receptor (GR), and NF-κB. The murine Mmp9 promoter (-569 to +19) was markedly activated in metastatic colon cancer cells and additionally activated by tumoroid formation and by β-catenin signaling stimulator lithium chloride (LiCl). The Mmp9 promoter-driven fluorescent reporter cells enabled the monitoring of activities of MMP9/gelatinase, tumorigenesis, invasion, and metastasis in allogeneic/syngenic transplantation experiments. We also demonstrated pharmacological actions as follows. ids Dexamethasone and hydrocortisone, steroidal medications binding to GR, inhibited the Mmp9 promoter but did not inhibit tumorigenesis. On the other hand, an antimetabolite 5-fluorouracil, a golden standard for colon cancer chemotherapy, inhibited tumoroid formation but did not inhibit Mmp9 promoter activity. Notably, anti-malaria medication artesunate inhibited both tumorigenesis and the Mmp9 promoter in vitro, potentially through inhibition of β-catenin/TCF/LEF signaling. Thus, this novel reporter system enabled monitoring tumorigenesis, invasiveness, metastasis, key regulatory signalings such as β-catenin/MMP9 axis, and druggability
The Biological Efficacy of Natural Products against Acute and Chronic Inflammatory Diseases in the Oral Region
The oral inflammatory diseases are divided into two types: acute and chronic inflammatory diseases. In this review, we summarize the biological efficacy of herbal medicine, natural products, and their active ingredients against acute and chronic inflammatory diseases in the oral region, especially stomatitis and periodontitis. We review the effects of herbal medicines and a biscoclaurin alkaloid preparation, cepharamthin, as a therapy against stomatitis, an acute inflammatory disease. We also summarize the effects of herbal medicines and natural products against periodontitis, a chronic inflammatory disease, and one of its clinical conditions, alveolar bone resorption. Recent studies show that several herbal medicines such as kakkonto and ninjinto reduce LPS-induced PGE 2 production by human gingival fibroblasts. Among herbs constituting these herbal medicines, shokyo (Zingiberis Rhizoma) and kankyo (Zingiberis Processum Rhizoma) strongly reduce PGE 2 production. Moreover, anti-osteoclast activity has been observed in some natural products with anti-inflammatory effects used against rheumatoid arthritis such as carotenoids, flavonoids, limonoids, and polyphenols. These herbal medicines and natural products could be useful for treating oral inflammatory diseases
Antiparkinson Drug Benztropine Suppresses Tumor Growth, Circulating Tumor Cells, and Metastasis by Acting on SLC6A3/DAT and Reducing STAT3
Tumor growth, progression, and therapy resistance are crucial factors in the prognosis of cancer. The properties of three-dimensional (3D) tumor-like organoids (tumoroids) more closely resemble in vivo tumors compared to two-dimensionally cultured cells and are therefore effectively used for assays and drug screening. We here established a repurposed drug for novel anticancer research and therapeutics using a 3D tumoroid-based screening system. We screened six pharmacologically active compounds by using an original tumoroid-based multiplex phenotypic screening system with a matrix metalloproteinase 9 (MMP9) promoter-driven fluorescence reporter for the evaluation of both tumoroid formation and progression. The antiparkinson drug benztropine was the most effective compound uncovered by the screen. Benztropine significantly inhibited in vitro tumoroid formation, cancer cell survival, and MMP9 promoter activity. Benztropine also reduced the activity of oncogenic signaling transducers and trans-activators for MMP9, including STAT3, NF-kappa B, and beta-catenin, and the properties of cancer stem cells/cancer-initiating cells. Benztropine and GBR-12935 directly targeted the dopamine transporter DAT/SLC6A3, whose genetic alterations such as amplification were correlated with poor prognosis for cancer patients. Benztropine also inhibited the tumor growth, circulating tumor cell (CTC) number, and rate of metastasis in a tumor allograft model in mice. In conclusion, we propose the repurposing of benztropine for anticancer research and therapeutics that can suppress tumor progression, CTC, and metastasis of aggressive cancers by reducing key pro-tumorigenic factors
High Glucose Increases Metallothionein Expression in Renal Proximal Tubular Epithelial Cells
Metallothionein (MT) is an intracellular metal-binding, cysteine-rich protein, and is a potent antioxidant that protects cells and tissues from oxidative stress. Although the major isoforms MT-1 and -2 (MT-1/-2) are highly inducible in many tissues, the distribution and role of MT-1/-2 in diabetic nephropathy are poorly understood. In this study, diabetes was induced in adult male rats by streptozotocin, and renal tissues were stained with antibodies for MT-1/-2. MT-1/-2 expression was also evaluated in mProx24 cells, a mouse renal proximal tubular epithelial cell line, stimulated with high glucose medium and pretreated with the antioxidant vitamin E. MT-1/-2 expression was gradually and dramatically increased, mainly in the proximal tubular epithelial cells and to a lesser extent in the podocytes in diabetic rats, but was hardly observed in control rats. MT-1/-2 expression was also increased by high glucose stimulation in mProx24 cells. Because the induction of MT was suppressed by pretreatment with vitamin E, the expression of MT-1/-2 is induced, at least in part, by high glucose-induced oxidative stress. These observations suggest that MT-1/-2 is induced in renal proximal tubular epithelial cells as an antioxidant to protect the kidney from oxidative stress, and may offer a novel therapeutic target against diabetic nephropathy