7 research outputs found

    Vibrational cooling of cold molecules with optimised shaped pulses RID E-9057-2011

    No full text
    A review of our recent experiments on broadband vibrational cooling of cold cesium molecules and of the related theory is presented. Our method is based on repetitive optical pumping cycles driven by laser light which is broad enough to excite all populated vibrational levels. Originally, the accumulation of molecular population in a particular, pre-selected vibrational level was achieved by removing from the broadband light all frequencies that could excite that vibrational level and thus making it a 'dark state' of the system. Here, we focus onto an additional, more sophisticated shaping method, which consists of selecting only specific frequency components that excite molecules into vibrational levels that favourably decay into the pre-selected level. The population transfer to any desired state can thus be optimised, i.e. the total population transfer to the desired vibrational level is maximised while the number of absorption-emission cycles required for the vibrational cooling is minimised. Finally, we apply this optimised technique to some more complex and still experimentally open cases: the pumping into the a(3)Sigma(+)(u) ground state for the case of Cs(2) homonuclear molecules, the rotational pumping into a pre-selected ro-vibrational level and the NaCs as an example for heteronuclear molecules

    Broadband Vibrational Cooling of Cold Cesium Molecules: Theory and Experiments RID E-9057-2011

    No full text
    The use of a broadband, frequency shaped femtosecond laser on translationally cold cesium molecules has recently demonstrated to be a very efficient method of cooling also the vibrational degree of freedom. A sample of cold molecules, initially distributed over several vibrational levels, has thus been transfered into a single selected vibrational level of the singlet. X(1)Sigma(g) ground electronic state. Our method is based on repeated optical pumping by laser light with a spectrum broad enough to excite all populated vibrational levels but limited in its frequency bandwidth with a spatial light modulator. In such a way we are able to eliminate transitions from the selected level, in which molecules accumulate. In this paper we briefly report the main experimental results and then address, in a detailed way by computer simulations, the perspectives for a "complete" cooling of the molecules, including also the rotational degree of freedom. Since the pumping process strongly depends on the relative shape of the ground and excited potential curves, ro-vibrational cooling through different excited states is theoretically compared

    Cold cesium molecules: from formation to cooling RID E-9057-2011

    No full text
    Recent experiments on formation of translationally cold ground state molecules, their subsequent broadband vibrational cooling and study of rotations are presented together with the related modeling. We produce cold molecules by photoassociating pairs of cold cesium atoms that can decay into ground state molecules in different vibrational levels. Then we laser cool the vibrational degree of freedom by selecting a single target vibrational level. Our method is based on repeated optical pumping by laser light with a spectrum broad enough to excite all populated vibrational levels but limited in its frequency bandwidth with a spatial light modulator. In such a way we are able to eliminate transitions from the selected level, in which molecules accumulate. Results for vibrational cooling into the nu = 0, nu = 1, nu = 2 and nu = 7 level of the singlet X(1)Sigma(g) ground electronic state are presented. Depletion spectroscopy is performed to study the rotational distribution of the created molecules. In the theoretical modeling of the process we are able to reproduce our results and investigate the prospects for a 'complete' cooling of molecules, including also their rotational degree of freedom

    Formation and interactions of cold and ultracold molecules: new challenges for interdisciplinary physics

    Full text link
    Progress on researches in the field of molecules at cold and ultracold temperatures is reported in this review. It covers extensively the experimental methods to produce, detect and characterize cold and ultracold molecules including association of ultracold atoms, deceleration by external fields and kinematic cooling. Confinement of molecules in different kinds of traps is also discussed. The basic theoretical issues related to the knowledge of the molecular structure, the atom-molecule and molecule-molecule mutual interactions, and to their possible manipulation and control with external fields, are reviewed. A short discussion on the broad area of applications completes the review.Comment: to appear in Reports on Progress in Physic
    corecore