459 research outputs found

    Quantitative measurement of the surface charge density

    Full text link
    We present a method of measuring the charge density on dielectric surfaces. Similar to electrostatic force microscopy we record the electrostatic interaction between the probe and the sample surface, but at large tip-sample distances. For calibration we use a pyroelectric sample which allows us to alter the surface charge density by a known amount via a controlled temperature change. For proof of principle we determined the surface charge density under ambient conditions of ferroelectric lithium niobate

    Quantitative analysis of ferroelectric domain imaging with piezoresponse force microscopy

    Full text link
    The contrast mechanism for ferroelectric domain imaging via piezoresponse force microscopy (PFM) is investigated. A novel analysis of PFM measurements is presented which takes into account the background caused by the experimental setup. This allows, for the first time, a quantitative, frequency independent analysis of the domain contrast which is in good agreement with the expected values for the piezoelectric deformation of the sample and satisfies the generally required features of PFM imaging

    Crosstalk Correction in Atomic Force Microscopy

    Full text link
    Commercial atomic force microscopes usually use a four-segmented photodiode to detect the motion of the cantilever via laser beam deflection. This read-out technique enables to measure bending and torsion of the cantilever separately. A slight angle between the orientation of the photodiode and the plane of the readout beam, however, causes false signals in both readout channels, so-called crosstalk, that may lead to misinterpretation of the acquired data. We demonstrate this fault with images recorded in contact mode on ferroelectric crystals and present an electronic circuit to compensate for it, thereby enabling crosstalk-free imaging

    Impact of Electrostatic Forces in Contact Mode Scanning Force Microscopy

    Full text link
    In this \ll contribution we address the question to what extent surface charges affect contact-mode scanning force microscopy measurements. % We therefore designed samples where we could generate localized electric field distributions near the surface as and when required. % We performed a series of experiments where we varied the load of the tip, the stiffness of the cantilever and the hardness of the sample surface. % It turned out that only for soft cantilevers could an electrostatic interaction between tip and surface charges be detected, irrespective of the surface properties, i.\,e. basically regardless its hardness. % We explain these results through a model based on the alteration of the tip-sample potential by the additional electric field between charged tip and surface charges

    Sol-Gel Derived Ferroelectric Nanoparticles Investigated by Piezoresponse Force Microscopy

    Full text link
    Piezoresponse force microscopy (PFM) was used to investigate the ferroelectric properties of sol-gel derived LiNbO3_3 nanoparticles. To determine the degree of ferroelectricity we took large-area images and performed statistical image-analysis. The ferroelectric behavior of single nanoparticles was verified by poling experiments using the PFM tip. Finally we carried out simultaneous measurements of the in-plane and the out-of-plane piezoresponse of the nanoparticles, followed by measurements of the same area after rotation of the sample by 90^{\circ} and 180^{\circ}. Such measurements basically allow to determine the direction of polarization of every single particle

    Impact of elasticity on the piezoresponse of adjacent ferroelectric domains investigated by scanning force microscopy

    Full text link
    As a consequence of elasticity, mechanical deformations of crystals occur on a length scale comparable to their thickness. This is exemplified by applying a homogeneous electric field to a multi-domain ferroelectric crystal: as one domain is expanding the adjacent ones are contracting, leading to clamping at the domain boundaries. The piezomechanically driven surface corrugation of micron-sized domain patterns in thick crystals using large-area top electrodes is thus drastically suppressed, barely accessible by means of piezoresponse force microscopy

    Precision nanoscale domain engineering of lithium niobate via UV laser induced inhibition of poling

    No full text
    Continuous wave ultraviolet (UV) laser irradiation at lambda=244 nm on the +z face of undoped and MgO doped congruent lithium niobate single crystals has been observed to inhibit ferroelectric domain inversion. The inhibition occurs directly beneath the illuminated regions, in a depth greater than 100 nm during subsequent electric field poling of the crystal. Domain inhibition was confirmed by both differential domain etching and piezoresponse force microscopy. This effect allows the formation of arbitrarily shaped domains in lithium niobate and forms the basis of a high spatial resolution micro-structuring approach when followed by chemical etching

    Ultra-smooth lithium niobate micro-resonators by surface tension reshaping

    No full text
    Thermal treatment of micro-structured lithium niobate substrates at temperatures close to, but below the melting point, allows surface tension to reshape a preferentially melted surface zone [1] of the crystal to form ultra-smooth single crystal toroidal or spherical structures. Such structures, an example of which is shown in figure 1, are suitable for the fabrication of photonic micro-resonators with low scattering loss. The thermally treated material maintains its single crystal nature after the thermal treatment because the bulk remains solid throughout the process acting as seed during the recrystallization process which takes place during the cooling stage. The single crystal nature of the reshaped material has been verified by piezoresponse force microscopy, Raman spectroscopy and chemical etching. The inherent properties of lithium niobate crystals (optically nonlinear, piezoelectric and electro-optic) makes the resultant micro-resonator extremely suitable for sensing applications, for the production of micro-lasers (if doped with Er or Nd), for nonlinear frequency generation and finally for switching/modulation and tunable spectral filtering in optical telecommunications. The transformation of the initial surface micro-structures to the resulting resonator structure is a temperature dependent process as the surface tension acts on the surface melted layer of the crystal, Experimental investigation and modelling of the thermal treatment as well as investigation of the performance of these microresonators is underway to establish full control of the fabrication process for practical applications
    corecore