10 research outputs found

    The Role of Bone Sialoprotein in Periodontal Tissue Development and Bone Repair

    Get PDF
    Bone development and repair involve complex processes that include interaction between cells and their surrounding matrix. In the body, bone sialoprotein (BSP) expression is up-regulated at the onset of mineralization. BSP is a multifunctional acidic phosphoprotein with collagen-binding, hydroxyapatite nucleating, and integrin recognition (RGD sequence, which is important for cell-attachment and signaling) regions. Mice lacking BSP expression (Bsp-/-), exhibit a bone phenotype with reductions in bone mineral density, bone length, osteoclast activation, and impaired bone healing. This thesis examined the role of BSP in tooth development and also its potential use as a therapeutic reagent for bone repair. MicroCT and histological analysis of Bsp-/-mice revealed significant periodontal tissue breakdown marked by defective acellular cementum formation leading to periodontal ligament detachment, extensive alveolar bone and tooth root resorption, and tooth malocclusion. Substituting hard to soft diet, which minimized applied stress during mastication, did not reduce extent of periodontal tissue breakdown. However, soft diets eliminated the incidence of severe incisor malocclusion and the Bsp-/- mice featured normal body weight, long-bone length, and serum alkaline phosphatase activity, suggesting that tooth dysfunction and malnutrition contribute to growth and skeletal defects previously reported. In the bone repair studies, the effectiveness of BSP-treated nano-hydroxyapatite/poly(ester-urethane) (nHA/PU) scaffolds in promoting bone regeneration was determined using a rat calvarial defect model. Recombinant human bone morphogenetic protein (rhBMP-2), which is a potent growth factor was used as the positive control for repair. Addition of BSP to nHA/PU scaffolds improved cell attachment and differentiation, and the consequent osteogenic mineralization in vitro. In vivo, at 6 weeks, microCT and histological analysis indicated that the rhBMP-2 treated nHA/PU scaffolds promoted significant new bone repair, in which approximately 70% of the defect, based on bone volume to total defect volume, was filled with new bone. In contrast, both BSP-treated nHA/PU scaffolds and non-treated scaffolds resulted in approximately 20% new bone formed. These findings suggest that BSP plays a non-redundant role in cementum formation, likely involved in initiating mineralization on the root surface. The effectiveness of nHA/PU scaffold as a carrier for rhBMP-2 and BSP was verified. However, in our system, BSP by itself was not a potent promoter of bone regeneration in vivo

    The role of bone sialoprotein in the tendon-bone insertion

    Get PDF
    © 2016 International Society of Matrix Biology. Tendons/ligaments insert into bone via a transitional structure, the enthesis, which is susceptible to injury and difficult to repair. Fibrocartilaginous entheses contain fibrocartilage in their transitional zone, part of which is mineralized. Mineral-associated proteins within this zone have not been adequately characterized. Members of the Small Integrin Binding Ligand N-linked Glycoprotein (SIBLING) family are acidic phosphoproteins expressed in mineralized tissues. Here we show that two SIBLING proteins, bone sialoprotein (BSP) and osteopontin (OPN), are present in the mouse enthesis. Histological analyses indicate that the calcified zone of the quadriceps tendon enthesis is longer in Bsp-/- mice, however no difference is apparent in the supraspinatus tendon enthesis. In an analysis of mineral content within the calcified zone, micro-CT and Raman spectroscopy reveal that the mineral content in the calcified fibrocartilage of the quadriceps tendon enthesis are similar between wild type and Bsp-/- mice. Mechanical testing of the patellar tendon shows that while the tendons fail under similar loads, the Bsp-/- patellar tendon is 7.5% larger in cross sectional area than wild type tendons, resulting in a 16.5% reduction in failure stress. However, Picrosirius Red staining shows no difference in collagen organization. Data collected here indicate that BSP is present in the calcified fibrocartilage of murine entheses and suggest that BSP plays a regulatory role in this structure, influencing the growth of the calcified fibrocartilage in addition to the weakening of the tendon mechanical properties. Based on the phenotype of the Bsp-/- mouse enthesis, and the known in vitro functional properties of the protein, BSP may be a useful therapeutic molecule in the reattachment of tendons and ligaments to bone

    Nanophase bone substitute for craniofacial load bearing application: Pilot study in the rodent

    No full text
    An exploratory pilot study shows that a rodent mandibular defect model is useful in determining the biological response to a nanophase collagen/apatite composite designed as a biomimetic load-bearing bone substitute. Using a critical size defect, eight groups of rats (n = 3) were implanted with four renditions of the nanophase bone substitute (NBS) biomaterial. Each rendition was tested with and without recombinant human bone morphogenetic protein 2 (BMP2). NBS biomaterial renditions were: baseline, hyper-densified, d-ribose crosslinked, and d-ribose crosslinked and hyper-densified. Biological outcomes were assessed surgically, radiologically, and histologically. With the limited power available due to the small N\u27s involved, some interesting hypotheses were generated that will be more fully investigated in future studies. BMP2 loaded NBS, when uncrosslinked, resulted in robust bone formation in the entire defect volume (regardless of porosity). Unloaded NBS were well tolerated but did not cause significant new bone formation in the defect volume. Densification alone had little effect on in vivo performance. Crosslinking thwarted implant uptake of BMP2 and resulted in fibrous encapsulation. It is concluded that the nanophase bone substitute is well tolerated in this bone defect model. When loaded with BMP2, implantation resulted in complete bony healing and defect closure with implant density (porosity) having little effect on bone healing or remodeling. Without BMP2 the biomaterial did not result in defect closure. Crosslinking, necessary to increase mechanical properties in an aqueous environment, disrupts osteointegration and BMP2 uptake. Alternate implant fabrication strategies will be necessary to achieve an improved balance between material strength and osteointegration. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 520-532, 2018

    Minor Review: An Overview of a Synthetic Nanophase Bone Substitute

    Get PDF
    Material is reviewed that consists of reconstituted collagen fibril gel mineralized in a manner that produces biomimetically sized nanoapatites intimately associated with the fibrils. This gel is formed into usable shapes with a modulus and strength that allow it to be surgically press fitted into bony defects. The design paradigm for the material is that the nanoapatites will dissolve into soluble Ca2+ as the collagen is degraded into RGD-containing peptide fragments due to osteoclastic action. This is intended to signal to the osteoclasts to continue removing the material in a biomimetic fashion similar to bony remodeling. Preliminary experiments in a subcutaneous rat model show that the material is biocompatible with respect to inflammatory and immunogenic responses, and that it supports cellular invasion. Preliminary experiments in a critical-sized mandibular defect in rats show that the material is resorbable and functions well as a bone morphogenetic 2 (BMP-2) carrier. We have produced a range of mechanical and biological responses by varying mechanical and chemical processing of the material
    corecore