203 research outputs found

    Early transverse tubule development begins in utero in the sheep heart.

    Get PDF
    Published onlineJournal ArticleThis is the author accepted manuscript. The final version is available from Springer Verlag via the DOI in this record.The ventricular cardiomyocytes of adult mammals contain invaginations of the plasma membrane known as transverse (t)-tubules. These regular structures are essential for the synchronisation of excitation-contraction (EC) coupling throughout the cell, which is a vital process for cardiac function. T-tubules form a close association with the sarcoplasmic reticulum (SR) to form junctions, where several key proteins involved in EC coupling are localised, including the SR calcium release channels-the ryanodine receptors (RyR). The lipophilic SR protein junctophilin-2 (JPH2) has been implicated in the development of both the junctions and t-tubules. Several studies have identified that t-tubules develop only postnatally in rodents, while historical electron microscopy data indicate that this is not the case in larger mammals, including humans. We have performed, to our knowledge, the first fluorescent, target-specific study to characterise t-tubule development in the large mammalian fetal heart, focussing on the sheep. T-tubules were present in fetal sheep hearts from 114 days gestation (with term being 145 days), with occurrence progressively increasing with gestational age, and further maturation after birth. This was accompanied by an increasing intracellular localisation of JPH2, which progressively increased its association with RyR within the cardiomyocytes as they undergo hypertrophy. These findings indicate that large mammalian hearts exhibit a significantly different temporal pattern of development compared to that of the rodent. Our findings have potential implications for human cardiac development, including the future investigation of congenital heart disease.This research was supported by a Health Research Council of New Zealand grant (#12/240) awarded to CS. We wish to thank Prof Laura Bennet, Dr Joanne Davidson and the Fetal Physiology & Neuroscience group, Department of Physiology, University of Auckland for supplying the tissue used in this study, with original projects supported by Health Research Council of New Zealand research grants (#14/216 and #12/613)

    Mechanisms underlying calcium sparks in cardiac muscle

    Get PDF
    This is the final version. Available from Rockefeller University Press via the DOI in this record

    Versatile multiplexed super-resolution imaging of nanostructures by Quencher-Exchange-PAINT

    Get PDF
    This is the final version of the article. Available from Springer Verlag via the DOI in this record.The optical super-resolution technique DNA-PAINT (Point Accumulation Imaging in Nanoscale Topography) provides a flexible way to achieve imaging of nanoscale structures at ∼10-nanometer resolution. In DNA-PAINT, fluorescently labeled DNA “imager” strands bind transiently and with high specificity to complementary target “docking” strands anchored to the structure of interest. The localization of single binding events enables the assembly of a super-resolution image, and this approach effectively circumvents photobleaching. The solution exchange of imager strands is the basis of Exchange-PAINT, which enables multiplexed imaging that avoids chromatic aberrations. Fluid exchange during imaging typically requires specialized chambers or washes, which can disturb the sample. Additionally, diffusional washout of imager strands is slow in thick samples such as biological tissue slices. Here, we introduce Quencher-Exchange-PAINT—a new approach to Exchange-PAINT in regular open-top imaging chambers—which overcomes the comparatively slow imager strand switching via diffusional imager washout. Quencher-Exchange-PAINT uses “quencher” strands, i.e., oligonucleotides that prevent the imager from binding to the targets, to rapidly reduce unwanted single-stranded imager concentrations to negligible levels, decoupled from the absolute imager concentration. The quencher strands contain an effective dye quencher that reduces the fluorescence of quenched imager strands to negligible levels. We characterized Quencher-Exchange-PAINT when applied to synthetic, cellular, and thick tissue samples. Quencher-Exchange-PAINT opens the way for efficient multiplexed imaging of complex nanostructures, e.g., in thick tissues, without the need for washing steps. [Figure not available: see fulltext.]The work was supported by funding from the Human Frontier Science Program (No. 0027/2013) and the Engineering and Physical Sciences Research Council of the UK (No. EP/N008235/1)

    Studying molecular interactions in the intact organism: fluorescence correlation spectroscopy in the living zebrafish embryo

    Get PDF
    This is the final version. Available on open access from Springer via the DOI in this recordCell behaviour and function is determined through the interactions of a multitude of molecules working in concert. To observe these molecular dynamics, biophysical studies have been developed that track single interactions. Fluorescence correlation spectroscopy (FCS) is an optical biophysical technique that non-invasively resolves single molecules through recording the signal intensity at the femtolitre scale. However, recording the behaviour of these biomolecules using in vitro-based assays often fails to recapitulate the full range of variables in vivo that directly confer dynamics. Therefore, there has been an increasing interest in observing the state of these biomolecules within living organisms such as the zebrafish Danio rerio. In this review, we explore the advancements of FCS within the zebrafish and compare and contrast these findings to those found in vitro.Biotechnology and Biological Sciences Research Council (BBSRC)Living Systems Institute, University of Exete

    In vitro reconstitution of branching microtubule nucleation

    Get PDF
    This is the final version. Available on open access from eLife Sciences Publications via the DOI in this record. Eukaryotic cell division requires the mitotic spindle, a microtubule (MT)-based structure which accurately aligns and segregates duplicated chromosomes. The dynamics of spindle formation are determined primarily by correctly localising the MT nucleator, g-Tubulin Ring Complex (g-TuRC), within the cell. A conserved MT-associated protein complex, Augmin, recruits g- TuRC to pre-existing spindle MTs, amplifying their number, in an essential cellular phenomenon termed ‘branching’ MT nucleation. Here, we purify endogenous, GFP-tagged Augmin and g-TuRC from Drosophila embryos to near homogeneity using a novel one-step affinity technique. We demonstrate that, in vitro, while Augmin alone does not affect Tubulin polymerisation dynamics, it stimulates g-TuRC-dependent MT nucleation in a cell cycle-dependent manner. We also assemble and visualise the MT-Augmin-g-TuRC-MT junction using light microscopy. Our work therefore conclusively reconstitutes branching MT nucleation. It also provides a powerful synthetic approach with which to investigate the emergence of cellular phenomena, such as mitotic spindle formation, from component parts.Biotechnology & Biological Sciences Research Council (BBSRC)University of ExeterScience and Technology Facilities Council (STFC

    Functional Phenotype Flow Cytometry: On Chip Sorting of Individual Cells According to Responses to Stimuli

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordThe ability to effectively separate and isolate biological cells into specific and well-defined subpopulations is crucial for the advancement of our understanding of cellular heterogeneity and its relevance to living systems. Here is described the development of the functional phenotype flow cytometer (FPFC), a new device designed to separate cells on the basis of their in situ real-time phenotypic responses to stimuli. The FPFC performs a cascade of cell processing steps on a microfluidic platform: introduces biological cells one at a time into a solution of a biological reagent that acts as a stimulus, incubates the cells with the stimulus solution in a flow, and sorts the cells into subpopulations according to their phenotypic responses to the provided stimulus. The presented implementation of the FPFC uses intracellular fluorescence as a readout, incubates cells for 75 s, and operates at a throughput of up to 4 cells min−1—resulting in the profiling and sorting of hundreds of cells within a few hours. The design and operation of the FPFC are validated by sorting cells from the human Burkitt's lymphoma cancerous cell line Ramos on the basis of their response to activation of the B cell antigen receptor (BCR) by a targeted monoclonal antibody.Biotechnology & Biological Sciences Research Council (BBSRC)Academy of Medical SciencesSN

    Examination of the Effects of Heterogeneous Organization of RyR Clusters, Myofibrils and Mitochondria on Ca2+ Release Patterns in Cardiomyocytes

    Get PDF
    Spatio-temporal dynamics of intracellular calcium, [Ca2+]i, regulate the contractile function of cardiac muscle cells. Measuring [Ca2+]i flux is central to the study of mechanisms that underlie both normal cardiac function and calcium-dependent etiologies in heart disease. However, current imaging techniques are limited in the spatial resolution to which changes in [Ca2+]i can be detected. Using spatial point process statistics techniques we developed a novel method to simulate the spatial distribution of RyR clusters, which act as the major mediators of contractile Ca2+ release, upon a physiologically-realistic cellular landscape composed of tightly-packed mitochondria and myofibrils.We applied this method to computationally combine confocal-scale (~ 200 nm) data of RyR clusters with 3D electron microscopy data (~ 30 nm) of myofibrils and mitochondria, both collected from adult rat left ventricular myocytes. Using this hybrid-scale spatial model, we simulated reaction-diffusion of [Ca2+]i during the rising phase of the transient (first 30 ms after initiation). At 30 ms, the average peak of the simulated [Ca2+]i transient and of the simulated fluorescence intensity signal, F/F0, reached values similar to that found in the literature ([Ca2+]i 1 μM; F/F0 5.5). However, our model predicted the variation in [Ca2+]i to be between 0.3 and 12.7 μM (~3 to 100 fold from resting value of 0.1 μM) and the corresponding F/F0 signal ranging from 3 to 9.5. We demonstrate in this study that: (i) heterogeneities in the [Ca2+]i transient are due not only to heterogeneous distribution and clustering of mitochondria; (ii) but also to heterogeneous local densities of RyR clusters. Further, we show that: (iii) these structureinduced heterogeneities in [Ca2+]i can appear in line scan data. Finally, using our unique method for generating RyR cluster distributions, we demonstrate the robustness in the [Ca2+]i transient to differences in RyR cluster distributions measured between rat and human cardiomyocytes

    Numerical Analysis of Ca2+ Signaling in Rat Ventricular Myocytes with Realistic Transverse-Axial Tubular Geometry and Inhibited Sarcoplasmic Reticulum

    Get PDF
    The t-tubules of mammalian ventricular myocytes are invaginations of the cell membrane that occur at each Z-line. These invaginations branch within the cell to form a complex network that allows rapid propagation of the electrical signal, and hence synchronous rise of intracellular calcium (Ca2+). To investigate how the t-tubule microanatomy and the distribution of membrane Ca2+ flux affect cardiac excitation-contraction coupling we developed a 3-D continuum model of Ca2+ signaling, buffering and diffusion in rat ventricular myocytes. The transverse-axial t-tubule geometry was derived from light microscopy structural data. To solve the nonlinear reaction-diffusion system we extended SMOL software tool (http://mccammon.ucsd.edu/smol/). The analysis suggests that the quantitative understanding of the Ca2+ signaling requires more accurate knowledge of the t-tubule ultra-structure and Ca2+ flux distribution along the sarcolemma. The results reveal the important role for mobile and stationary Ca2+ buffers, including the Ca2+ indicator dye. In agreement with experiment, in the presence of fluorescence dye and inhibited sarcoplasmic reticulum, the lack of detectible differences in the depolarization-evoked Ca2+ transients was found when the Ca2+ flux was heterogeneously distributed along the sarcolemma. In the absence of fluorescence dye, strongly non-uniform Ca2+ signals are predicted. Even at modest elevation of Ca2+, reached during Ca2+ influx, large and steep Ca2+ gradients are found in the narrow sub-sarcolemmal space. The model predicts that the branched t-tubule structure and changes in the normal Ca2+ flux density along the cell membrane support initiation and propagation of Ca2+ waves in rat myocytes

    Cellular and Molecular Anatomy of the Human Neuromuscular Junction

    Get PDF
    The neuromuscular junction (NMJ) plays a fundamental role in transferring information from lower motor neuron to skeletal muscle to generate movement. It is also an experimentally accessible model synapse routinely studied in animal models to explore fundamental aspects of synaptic form and function. Here, we combined morphological techniques, super-resolution imaging, and proteomic profiling to reveal the detailed cellular and molecular architecture of the human NMJ. Human NMJs were significantly smaller, less complex, and more fragmented than mouse NMJs. In contrast to mice, human NMJs were also remarkably stable across the entire adult lifespan, showing no signs of age-related degeneration or remodeling. Super-resolution imaging and proteomic profiling revealed distinctive distribution of active zone proteins and differential expression of core synaptic proteins and molecular pathways at the human NMJ. Taken together, these findings reveal human-specific cellular and molecular features of the NMJ that distinguish them from comparable synapses in other mammalian species.</p
    corecore