17 research outputs found

    第IX(a)因子および第X因子に対する二重特異性抗体であるエミシズマブはin vitroで第XI因子欠乏血漿における凝固機能を増強する

    Get PDF
    Essentials Emicizumab mimics factor (F)VIIIa cofactor function, augments the intrinsic tenase activity. We assessed the emicizumab-driven hemostatic function in FXI-deficient plasmas. Emicizumab improved the coagulation potentials in severe FXI-deficient plasma. Emicizumab may provide a possibility for clinical application in patients with FXI deficiency. SUMMARY: Background Patients with factor (F)XI deficiency commonly present with markedly prolonged activated partial thromboplastin times (APTT), although bleeding phenotypes are heterogeneous. Emicizumab, a bispecific monoclonal antibody to FIX/FIXa and FX/FXa, mimics FVIIIa cofactor function on phospholipid (PL) surfaces. Antibody reactions were designed, therefore, to augment mechanisms during the propagation phase of blood coagulation. Aim To assess emicizumab-driven hemostatic function in FXI-deficient plasmas. Methods and Results Standard ellagic acid (Elg)/PL-based APTTs of different FXI-deficient plasmas (n = 13; FXI activity, < 1 IU dl-1 ) were markedly shortened dose dependently by the presence of emicizumab. To further analyze the effects of emicizumab, clot waveform analysis (CWA) in FXI-deficient plasmas with emicizumab, triggered by tissue factor (TF)/Elg demonstrated improvements in both clot times, reflecting the initiation phase, and coagulation velocity, which represents the propagation phase. Emicizumab also enhanced the TF/Elg-triggered thrombin generation in FXI-deficient plasmas dose-dependently although the degree of enhancement varied in individual cases. Thrombin generation with either FVII-deficient plasma or FIX-deficient plasma treated with anti-FXI antibody showed little or no increase by the co-presence of emicizumab, suggesting that the accelerated thrombin generation in FXI-deficient plasmas by emicizumab should depend on the FIXa-involved coagulation propagation initially triggered by FVIIa/TF. The ex vivo addition of emicizumab to whole blood from three patients with severe FXI deficiency demonstrated modest, dose-dependent improvements in Ca2+ -triggered thromboelastograms (NATEM mode). Conclusion Emicizumab appeared to improve coagulation function in severe FXI-deficient plasma, and might provide possibilities for clinical application in patients with FXI deficiency.博士(医学)・乙第1427号・平成31年3月15日© 2018 International Society on Thrombosis and HaemostasisThis is the pre-peer reviewed version of the following article: [https://onlinelibrary.wiley.com/doi/full/10.1111/jth.14334], which has been published in final form at [http://dx.doi.org/10.1111/jth.14334]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions

    A 1.5-Mb PAC/BAC Contig Spanning the Prader-Willi Syndrome Critical Region (PWCR)

    Get PDF
    Prader-Willi syndrome (PWS) is a multiple anomalies/mental retardation syndrome. The putative PWS gene(s) remains unknown, and its occurrence is based on genomic imprinting at chromosome 15q11-q13. We have constructed a 1.5- Mb, fine, physical map of PWS critical region (PWCR) between two markers, D15S9 and D15S174 at 15q11-q13. The map is composed of 32 PAC and 3 BAC clones without any gaps. By the PAC/BAC-end sequencing procedure, a total of 26 sequence tag site (STS) markers were newly generated, and 5 expressed sequence tags (ESTs) were mapped in the region. The contig map was verified by both STS and fluorescence in situ hybridization analyses. Our map has higher resolution, compared with a previous YAC-based map of PWCR. It is useful for further genome analysis, especially on genomic imprinting of this region
    corecore