135 research outputs found
An estimate for the average spectral measure of random band matrices
For a class of random band matrices of band width , we prove regularity of
the average spectral measure at scales , and find its
asymptotics at these scales.Comment: 19 pp., revised versio
Almost Euclidean sections of the N-dimensional cross-polytope using O(N) random bits
It is well known that R^N has subspaces of dimension proportional to N on
which the \ell_1 norm is equivalent to the \ell_2 norm; however, no explicit
constructions are known. Extending earlier work by Artstein--Avidan and Milman,
we prove that such a subspace can be generated using O(N) random bits.Comment: 16 pages; minor changes in the introduction to make it more
accessible to both Math and CS reader
Quantum Diffusion and Delocalization for Band Matrices with General Distribution
We consider Hermitian and symmetric random band matrices in
dimensions. The matrix elements , indexed by , are independent and their variances satisfy \sigma_{xy}^2:=\E
\abs{H_{xy}}^2 = W^{-d} f((x - y)/W) for some probability density . We
assume that the law of each matrix element is symmetric and exhibits
subexponential decay. We prove that the time evolution of a quantum particle
subject to the Hamiltonian is diffusive on time scales . We
also show that the localization length of the eigenvectors of is larger
than a factor times the band width . All results are uniform in
the size \abs{\Lambda} of the matrix. This extends our recent result
\cite{erdosknowles} to general band matrices. As another consequence of our
proof we show that, for a larger class of random matrices satisfying
for all , the largest eigenvalue of is bounded
with high probability by for any ,
where M \deq 1 / (\max_{x,y} \sigma_{xy}^2).Comment: Corrected typos and some inaccuracies in appendix
Semi-classical analysis of non self-adjoint transfer matrices in statistical mechanics. I
We propose a way to study one-dimensional statistical mechanics models with
complex-valued action using transfer operators. The argument consists of two
steps. First, the contour of integration is deformed so that the associated
transfer operator is a perturbation of a normal one. Then the transfer operator
is studied using methods of semi-classical analysis.
In this paper we concentrate on the second step, the main technical result
being a semi-classical estimate for powers of an integral operator which is
approximately normal.Comment: 28 pp, improved the presentatio
Random wave functions and percolation
Recently it was conjectured that nodal domains of random wave functions are
adequately described by critical percolation theory. In this paper we
strengthen this conjecture in two respects. First, we show that, though wave
function correlations decay slowly, a careful use of Harris' criterion confirms
that these correlations are unessential and nodal domains of random wave
functions belong to the same universality class as non critical percolation.
Second, we argue that level domains of random wave functions are described by
the non-critical percolation model.Comment: 13 page
Delocalization and Diffusion Profile for Random Band Matrices
We consider Hermitian and symmetric random band matrices in dimensions. The matrix entries , indexed by x,y \in
(\bZ/L\bZ)^d, are independent, centred random variables with variances s_{xy}
= \E |h_{xy}|^2. We assume that is negligible if exceeds the
band width . In one dimension we prove that the eigenvectors of are
delocalized if . We also show that the magnitude of the matrix
entries \abs{G_{xy}}^2 of the resolvent is self-averaging
and we compute \E \abs{G_{xy}}^2. We show that, as and , the behaviour of \E |G_{xy}|^2 is governed by a diffusion operator
whose diffusion constant we compute. Similar results are obtained in higher
dimensions
Remarks on the KLS conjecture and Hardy-type inequalities
We generalize the classical Hardy and Faber-Krahn inequalities to arbitrary
functions on a convex body , not necessarily
vanishing on the boundary . This reduces the study of the
Neumann Poincar\'e constant on to that of the cone and Lebesgue
measures on ; these may be bounded via the curvature of
. A second reduction is obtained to the class of harmonic
functions on . We also study the relation between the Poincar\'e
constant of a log-concave measure and its associated K. Ball body
. In particular, we obtain a simple proof of a conjecture of
Kannan--Lov\'asz--Simonovits for unit-balls of , originally due to
Sodin and Lata{\l}a--Wojtaszczyk.Comment: 18 pages. Numbering of propositions, theorems, etc.. as appeared in
final form in GAFA seminar note
On a Watson-like Uniqueness Theorem and Gevrey Expansions
We present a maximal class of analytic functions, elements of which are in
one-to-one correspondence with their asymptotic expansions. In recent decades
it has been realized (B. Malgrange, J. Ecalle, J.-P. Ramis, Y. Sibuya et al.),
that the formal power series solutions of a wide range of systems of ordinary
(even non-linear) analytic differential equations are in fact the Gevrey
expansions for the regular solutions. Watson's uniqueness theorem belongs to
the foundations of this new theory. This paper contains a discussion of an
extension of Watson's uniqueness theorem for classes of functions which admit a
Gevrey expansion in angular regions of the complex plane with opening less than
or equal to (\frac \pi k,) where (k) is the order of the Gevrey expansion. We
present conditions which ensure uniqueness and which suggest an extension of
Watson's representation theorem. These results may be applied for solutions of
certain classes of differential equations to obtain the best accuracy estimate
for the deviation of a solution from a finite sum of the corresponding Gevrey
expansion.Comment: 18 pages, 4 figure
- …