172 research outputs found

    Voltage-gated sodium channels as targets for pyrethroid insecticides

    Get PDF
    The pyrethroid insecticides are a very successful group of compounds that have been used extensively for the control of arthropod pests of agricultural crops and vectors of animal and human disease. Unfortunately, this has led to the development of resistance to the compounds in many species. The mode of action of pyrethroids is known to be via interactions with the voltage-gated sodium channel. Understanding how binding to the channel is affected by amino acid substitutions that give rise to resistance has helped to elucidate the mode of action of the compounds and the molecular basis of their selectivity for insects vs mammals and between insects and other arthropods. Modelling of the channel/pyrethroid interactions, coupled with the ability to express mutant channels in oocytes and study function, has led to knowledge of both how the channels function and potentially how to design novel insecticides with greater species selectivity

    The pharmaceutical use of permethrin: Sources and behavior during municipal sewage treatment

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2010 Springer Science+Business Media, LLC.Permethrin entered use in the 1970s as an insecticide in a wide range of applications, including agriculture, horticultural, and forestry, and has since been restricted. In the 21st century, the presence of permethrin in the aquatic environment has been attributed to its use as a human and veterinary pharmaceutical, in particular as a pedeculicide, in addition to other uses, such as a moth-proofing agent. However, as a consequence of its toxicity to fish, sources of permethrin and its fate and behavior during wastewater treatment are topics of concern. This study has established that high overall removal of permethrin (approximately 90%) was achieved during wastewater treatment and that this was strongly dependent on the extent of biological degradation in secondary treatment, with more limited subsequent removal in tertiary treatment processes. Sources of permethrin in the catchment matched well with measured values in crude sewage and indicated that domestic use accounted for more than half of the load to the treatment works. However, removal may not be consistent enough to achieve the environmental quality standards now being derived in many countries even where tertiary treatment processes are applied.United Utilities PL

    Molecular survey of pyrethroid resistance mechanisms in Mexican field populations of Rhipicephalus (Boophilus) microplus

    Get PDF
    Susceptibility to synthetic pyrethroids (SP´s) and the role of two major resistance mechanisms were evaluated in Mexican Rhipicephalus microplus tick populations. Larval packet test (LPT), knock-down (kdr) PCR allele-specific assay (PASA) and esterase activity assays were conducted in tick populations for cypermethrin, flumethrin and deltamethrin. Esterase activity did not have a significant correlation with SP´s resistance. However a significant correlation (p < 0.01) was found between the presence of the sodium channel mutation, and resistance to SP´s as measured by PASA and LPT respectively. Just over half the populations (16/28) were cross-resistant to flumethrin, deltamethrin and cypermethrine, 21.4% of the samples (6/28) were susceptible to all of the three pyrethroids 10.7 of the samples (3/28) were resistant to flumethrin, 3.4 of the samples (1/28) were resistant to deltamethrin only and 7.1% (2/28) were resistant to flumethrin and deltamethrin. The presence of the kdr mutation correlates with resistance to the SP´s as a class. Target site insensitivity is the major mechanism of resistance to SP´s in Mexican R. microplus field strains, involving the presence of a sodium channel mutation, however, esterase-based, other mutations or combination of mechanisms can also occur

    PCR-based methods for the detection of L1014 kdr mutation in Anopheles culicifacies sensu lato

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Anopheles culicifacies s.l</it>., a major malaria vector in India, has developed widespread resistance to DDT and is becoming resistant to pyrethroids–the only insecticide class recommended for the impregnation of bed nets. Knock-down resistance due to a point mutation in the voltage gated sodium channel at L1014 residue (<it>kdr</it>) is a common mechanism of resistance to DDT and pyrethroids. The selection of this resistance may pose a serious threat to the success of the pyrethroid-impregnated bed net programme. This study reports the presence of <it>kdr </it>mutation (L1014F) in a field population of <it>An. culicifacies s.l</it>. and three new PCR-based methods for <it>kdr </it>genotyping.</p> <p>Methods</p> <p>The IIS4-IIS5 linker to IIS6 segments of the para type voltage gated sodium channel gene of DDT and pyrethroid resistant <it>An. culicifacies s.l</it>. population from the Surat district of India was sequenced. This revealed the presence of an A-to-T substitution at position 1014 leading to a leucine-phenylalanine mutation (L1014F) in a few individuals. Three molecular methods viz. Allele Specific PCR (AS-PCR), an Amplification Refractory Mutation System (ARMS) and Primer Introduced Restriction Analysis-PCR (PIRA-PCR) were developed and tested for <it>kdr </it>genotyping. The specificity of the three assays was validated following DNA sequencing of the samples genotyped.</p> <p>Results</p> <p>The genotyping of this <it>An. culicifacies s.l</it>. population by the three PCR based assays provided consistent result and were in agreement with DNA sequencing result. A low frequency of the <it>kdr </it>allele mostly in heterozygous condition was observed in the resistant population. Frequencies of the different genotypes were in Hardy-Weinberg equilibrium.</p> <p>Conclusion</p> <p>The Leu-Phe mutation, which generates the <it>kdr </it>phenotype in many insects, was detected in a pyrethroid and DDT resistant <it>An. culicifacies s.l</it>. population. Three PCR-based methods were developed for <it>kdr </it>genotyping. All the three assays were specific. The ARMS method was refractory to non-specific amplification in non-stringent amplification conditions. The PIRA-PCR assay is able to detect both the codons for the phenylalanine mutation at <it>kdr </it>locus, i.e., TTT and TTC, in a single assay, although the latter codon was not found in the population genotyped.</p

    Presence of two alternative kdr-like mutations, L1014F and L1014S, and a novel mutation, V1010L, in the voltage gated Na+ channel of Anopheles culicifacies from Orissa, India

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Knockdown resistance in insects resulting from mutation(s) in the voltage gated Na<sup>+ </sup>channel (VGSC) is one of the mechanisms of resistance against DDT and pyrethroids. Recently a point mutation leading to Leu-to-Phe substitution in the VGSC at residue 1014, a most common <it>kdr </it>mutation in insects, was reported in <it>Anopheles culicifacies</it>-a major malaria vector in the Indian subcontinent. This study reports the presence of two additional amino acid substitutions in the VGSC of an <it>An. culicifacies </it>population from Malkangiri district of Orissa, India.</p> <p>Methods</p> <p><it>Anopheles culicifacies sensu lato (s.l.) </it>samples, collected from a population of Malkangiri district of Orissa (India), were sequenced for part of the second transmembrane segment of VGSC and analyzed for the presence of non-synonymous mutations. A new primer introduced restriction analysis-PCR (PIRA-PCR) was developed for the detection of the new mutation L1014S. The <it>An. culicifacies </it>population was genotyped for the presence of L1014F substitution by an amplification refractory mutation system (ARMS) and for L1014S substitutions by using a new PIRA-PCR developed in this study. The results were validated through DNA sequencing.</p> <p>Results</p> <p>DNA sequencing of <it>An. culicifacies </it>individuals collected from district Malkangiri revealed the presence of three amino acid substitutions in the IIS6 transmembrane segments of VGSC, each one resulting from a single point mutation. Two alternative point mutations, 3042A>T transversion or 3041T>C transition, were found at residue L1014 leading to Leu (TTA)-to-Phe (TTT) or -Ser (TCA) changes, respectively. A third and novel substitution, Val (GTG)-to-Leu (TTG or CTG), was identified at residue V1010 resulting from either of the two transversions–3028G>T or 3028G>C. The L1014S substitution co-existed with V1010L in all the samples analyzed irrespective of the type of point mutation associated with the latter. The PIRA-PCR strategy developed for the identification of the new mutation L1014S was found specific as evident from DNA sequencing results of respective samples. Since L1014S was found tightly linked to V1010L, no separate assay was developed for the latter mutation. Screening of population using PIRA-PCR assays for 1014S and ARMS for 1014F alleles revealed the presence of all the three amino acid substitutions in low frequency.</p> <p>Conclusions</p> <p>This is the first report of the presence of L1014S (homologous to the <it>kdr-e </it>in <it>An. gambiae</it>) and a novel mutation V1010L (resulting from G-to-T or -C transversions) in the VGSC of <it>An. culicifacies </it>in addition to the previously described mutation L1014F. The V1010L substitution was tightly linked to L1014S substitution. A new PIRA-PCR strategy was developed for the detection of L1014S mutation and the linked V1010L mutation.</p

    Detection of 1014F kdr mutation in four major Anopheline malaria vectors in Indonesia

    Get PDF
    Background: Malaria is a serious public health problem in Indonesia, particularly in areas outside Java and Bali. The spread of resistance to the currently available anti-malarial drugs or insecticides used for mosquito control would cause an increase in malaria transmission. To better understand patterns of transmission and resistance in Indonesia, an integrated mosquito survey was conducted in three areas with different malaria endemicities, Purworejo in Central Java, South Lampung District in Sumatera and South Halmahera District in North Mollucca.\ud Methods: Mosquitoes were collected from the three areas through indoor and outdoor human landing catches (HLC) and indoor restinging catches. Specimens were identified morphologically by species and kept individually in 1.5 ml Eppendorf microtube. A fragment of the VGSC gene from 95 mosquito samples was sequenced and kdr allelic variation determined.\ud Results: The molecular analysis of these anopheline mosquitoes revealed the existence of the 1014F allele in 4 major malaria vectors from South Lampung. These species include, Anopheles sundaicus, Anopheles aconitus, Anopheles subpictus\ud andAnopheles vagus. The 1014F allele was not found in the other areas.\ud Conclusion: The finding documents the presence of this mutant allele in Indonesia, and implies that selection pressure on the Anopheles population in this area has occurred. Further studies to determine the impact of the resistance allele on the efficacy of pyrethroids in control programmes are neede

    Absence of knockdown resistance suggests metabolic resistance in the main malaria vectors of the Mekong region

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As insecticide resistance may jeopardize the successful malaria control programmes in the Mekong region, a large investigation was previously conducted in the Mekong countries to assess the susceptibility of the main malaria vectors against DDT and pyrethroid insecticides. It showed that the main vector, <it>Anopheles epiroticus</it>, was highly pyrethroid-resistant in the Mekong delta, whereas <it>Anopheles minimus sensu lato </it>was pyrethroid-resistant in northern Vietnam. <it>Anopheles dirus sensu stricto </it>showed possible resistance to type II pyrethroids in central Vietnam. <it>Anopheles subpictus </it>was DDT- and pyrethroid-resistant in the Mekong Delta. The present study intends to explore the resistance mechanisms involved.</p> <p>Methods</p> <p>By use of molecular assays and biochemical assays the presence of the two major insecticide resistance mechanisms, knockdown and metabolic resistance, were assessed in the main malaria vectors of the Mekong region.</p> <p>Results</p> <p>Two FRET/MCA assays and one PCR-RFLP were developed to screen a large number of <it>Anopheles </it>populations from the Mekong region for the presence of knockdown resistance (<it>kdr</it>), but no <it>kdr </it>mutation was observed in any of the study species. Biochemical assays suggest an esterase mediated pyrethroid detoxification in <it>An. epiroticus </it>and <it>An. subpictus </it>of the Mekong delta. The DDT resistance in <it>An. subpictus </it>might be conferred to a high GST activity. The pyrethroid resistance in <it>An. minimus s.l</it>. is possibly associated with increased detoxification by esterases and P450 monooxygenases.</p> <p>Conclusion</p> <p>As different metabolic enzyme systems might be responsible for the pyrethroid and DDT resistance in the main vectors, each species may have a different response to alternative insecticides, which might complicate the malaria vector control in the Mekong region.</p
    corecore