1,487 research outputs found

    For MutY, It's All about the OG

    Get PDF
    MutY and its human ortholog, MUTYH, repair a specific form of DNA damage: adenine mis-paired with the oxidatively modified form of deoxyguanosine, 8-oxo-7,8-dihydro-2′-deoxyguanosine. In a recent issue of Chemistry & Biology, Brinkmeyer et al. utilized mutant forms of MutY to reveal the critical residues in MutY that are required for this selectivity and specificity

    Co-creation and engagement in a DNA integrity cohort study

    Get PDF
    Abstract Introduction: The partnership between a research community engagement team (CE Team) and a community advisory board (CAB) formed the basis for bidirectional communication in developing resources for participant recruitment in a DNA integrity study. Engaging with a minoritized community, this partnership focused on respect, accessibility, and expanded engagement. Methods: A ten-member CAB, working in two groups defined by meeting time convenience, provided insight and feedback to the CE Team in the creation of recruitment and consent materials, via an iterative design process in which one CAB group reviewed and enhanced materials, and the second group tested and refined them further. The continuous analysis of CE Team notes from CAB meetings captured information needed both for materials refinement and implementation of CAB-suggested activities. Results: The partnership resulted in the co-creation of recruitment and consent materials that facilitated the enrollment of 191 individuals into the study. The CAB encouraged and assisted in expanded engagement inclusive of community leaders. This broader engagement provided information about the DNA integrity study to community decision-makers as well as responded to questions and concerns about the research. The bidirectional communication between the CAB and the CE Team encouraged the researchers to consider topics and research interests related to the current study but also responsive to community concerns. Conclusions: The CAB helped the CE Team develop a better understanding of the language of partnership and respect. In this way, the partnership opened doors for expanded community engagement and effective communication with potential study participants

    XRCC1 and base excision repair balance in response to nitric oxide

    Get PDF
    Inflammation associated reactive oxygen and nitrogen species (RONs), including peroxynitrite (ONOO−) and nitric oxide (NOradical dot), create base lesions that potentially play a role in the toxicity and large genomic rearrangements associated with many malignancies. Little is known about the role of base excision repair (BER) in removing these endogenous DNA lesions. Here, we explore the role of X-ray repair cross-complementing group 1 (XRCC1) in attenuating RONs-induced genotoxicity. XRCC1 is a scaffold protein critical for BER for which polymorphisms modulate the risk of cancer. We exploited CHO and human glioblastoma cell lines engineered to express varied levels of BER proteins to study XRCC1. Cytotoxicity and the levels of DNA repair intermediates (single-strand breaks; SSB) were evaluated following exposure of the cells to the ONOO− donor, SIN-1, and to gaseous NOradical dot. XRCC1 null cells were slightly more sensitive to SIN-1 than wild-type cells. We used small-scale bioreactors to expose cells to NOradical dot and found that XRCC1-deficient CHO cells were not sensitive. However, using a molecular beacon assay to test lesion removal in vitro, we found that XRCC1 facilitates AAG-initiated excision of two key NOradical dot-induced DNA lesions: 1,N[superscript 6]-ethenoadenine and hypoxanthine. Furthermore, overexpression of AAG rendered XRCC1-deficient cells sensitive to NOradical dot-induced DNA damage. These results show that AAG is a key glycosylase for BER of NOradical dot-induced DNA damage and that XRCC1's role in modulating sensitivity to RONs is dependent upon the cellular level of AAG. This demonstrates the importance of considering the expression of other components of the BER pathway when evaluating the impact of XRCC1 polymorphisms on cancer risk.Massachusetts Institute of Technology. Center for Environmental Health Sciences (NIEHS P30-ES002109)National Institutes of Health (U.S.) (NIH grant P01-CA026731)National Institutes of Health (U.S.) (NIH grant 2-R01-CA079827-05A1)National Institutes of Health (U.S.) (NIH Grant U01-ES016045)National Institutes of Health (U.S.) (NIH Grant GM087798)National Institutes of Health (U.S.) (NIH Grant CA148629)National Institutes of Health (U.S.) (NIH Grant ES019498)National Institutes of Health (U.S.) (Cancer Center Support Grant P30 CA047904

    Open multistate Majorana model

    Get PDF
    The multistate Majorana model in the presence of dissipation and dephasing is considered. It is proven that increasing the Hilbert space dimension the system becomes more and more fragile to quantum noise. The impossibility to recast the problem in the form of a set of independent spin-1/21/2 problems because of the presence of the noise is pointed out

    Gastrointestinal Hyperplasia with Altered Expression of DNA Polymerase β

    Get PDF
    Background: Altered expression of DNA polymerase β (Pol β) has been documented in a large percentage of human tumors. However, tumor prevalence or predisposition resulting from Pol β over-expression has not yet been evaluated in a mouse model. Methodology/Principal Findings: We have recently developed a novel transgenic mouse model that over-expresses Pol β. These mice present with an elevated incidence of spontaneous histologic lesions, including cataracts, hyperplasia of Brunner's gland and mucosal hyperplasia in the duodenum. In addition, osteogenic tumors in mice tails, such as osteoma and osteosarcoma were detected. This is the first report of elevated tumor incidence in a mouse model of Pol β over-expression. These findings prompted an evaluation of human gastrointestinal tumors with regard to Pol β expression. We observed elevated expression of Pol β in stomach adenomas and thyroid follicular carcinomas, but reduced Pol β expression in esophageal adenocarcinomas and squamous carcinomas. Conclusions/Significance: These data support the hypothesis that balanced and proficient base excision repair protein expression and base excision repair capacity is required for genome stability and protection from hyperplasia and tumor formation

    Moderate-to-High Intensity Physical Exercise in Patients with Alzheimer's Disease:A Randomized Controlled Trial

    Get PDF
    Background: Studies of physical exercise in patients with Alzheimer’s disease (AD) are few and results have been inconsistent. Objective: To assess the effects of a moderate-to-high intensity aerobic exercise program in patients with mild AD. Methods: In a randomized controlled trial, we recruited 200 patients with mild AD to a supervised exercise group (60-min sessions three times a week for 16 weeks) or to a control group. Primary outcome was changed from baseline in cognitive performance estimated by Symbol Digit Modalities Test (SDMT) in the intention-to-treat (ITT) group. Secondary outcomes included changes in quality of life, ability to perform activities of daily living, and in neuropsychiatric and depressive symptoms. Results: The ITT analysis showed no significant differences between intervention and control groups in change from baseline of SDMT, other cognitive tests, quality of life, or activities of daily living. The change from baseline in Neuropsychiatric Inventory differed significantly in favor of the intervention group (mean: –3.5, 95% confidence interval (CI) –5.8 to –1.3, p = 0.002). In subjects who adhered to the protocol, we found a significant effect on change from baseline in SDMT as compared with the control group (mean: 4.2, 95% CI 0.5 to 7.9, p = 0.028), suggesting a dose-response relationship between exercise and cognition. Conclusions: This is the first randomized controlled trial with supervised moderate-to-high intensity exercise in patients with mild AD. Exercise reduced neuropsychiatric symptoms in patients with mild AD, with possible additional benefits of preserved cognition in a subgroup of patients exercising with high attendance and intensity.</jats:p

    The Base Excision Repair Pathway Is Required for Efficient Lentivirus Integration

    Get PDF
    An siRNA screen has identified several proteins throughout the base excision repair (BER) pathway of oxidative DNA damage as important for efficient HIV infection. The proteins identified included early repair factors such as the base damage recognition glycosylases OGG1 and MYH and the late repair factor POLß, implicating the entire BER pathway. Murine cells with deletions of the genes Ogg1, Myh, Neil1 and Polß recapitulate the defect of HIV infection in the absence of BER. Defective infection in the absence of BER proteins was also seen with the lentivirus FIV, but not the gammaretrovirus MMLV. BER proteins do not affect HIV infection through its accessory genes nor the central polypurine tract. HIV reverse transcription and nuclear entry appear unaffected by the absence of BER proteins. However, HIV integration to the host chromosome is reduced in the absence of BER proteins. Pre-integration complexes from BER deficient cell lines show reduced integration activity in vitro. Integration activity is restored by addition of recombinant BER protein POLß. Lentiviral infection and integration efficiency appears to depend on the presence of BER proteins

    Mitochondria, Energetics, Epigenetics, and Cellular Responses to Stress

    Get PDF
    Background: Cells respond to environmental stressors through several key pathways, including response to reactive oxygen species (ROS), nutrient and ATP sensing, DNA damage response (DDR), and epigenetic alterations. Mitochondria play a central role in these pathways not only through energetics and ATP production but also through metabolites generated in the tricarboxylic acid cycle, as well as mitochondria–nuclear signaling related to mitochondria morphology, biogenesis, fission/fusion, mitophagy, apoptosis, and epigenetic regulation. Objectives: We investigated the concept of bidirectional interactions between mitochondria and cellular pathways in response to environmental stress with a focus on epigenetic regulation, and we examined DNA repair and DDR pathways as examples of biological processes that respond to exogenous insults through changes in homeostasis and altered mitochondrial function. Methods: The National Institute of Environmental Health Sciences sponsored the Workshop on Mitochondria, Energetics, Epigenetics, Environment, and DNA Damage Response on 25–26 March 2013. Here, we summarize key points and ideas emerging from this meeting. Discussion: A more comprehensive understanding of signaling mechanisms (cross-talk) between the mitochondria and nucleus is central to elucidating the integration of mitochondrial functions with other cellular response pathways in modulating the effects of environmental agents. Recent studies have highlighted the importance of mitochondrial functions in epigenetic regulation and DDR with environmental stress. Development and application of novel technologies, enhanced experimental models, and a systems-type research approach will help to discern how environmentally induced mitochondrial dysfunction affects key mechanistic pathways. Conclusions: Understanding mitochondria–cell signaling will provide insight into individual responses to environmental hazards, improving prediction of hazard and susceptibility to environmental stressors. Citation: Shaughnessy DT, McAllister K, Worth L, Haugen AC, Meyer JN, Domann FE, Van Houten B, Mostoslavsky R, Bultman SJ, Baccarelli AA, Begley TJ, Sobol RW, Hirschey MD, Ideker T, Santos JH, Copeland WC, Tice RR, Balshaw DM, Tyson FL. 2014. Mitochondria, energetics, epigenetics, and cellular responses to stress. Environ Health Perspect 122:1271–1278; http://dx.doi.org/10.1289/ehp.140841

    Comparing Breast Cancer Multiparameter Tests in the OPTIMA Prelim Trial: No Test Is More Equal Than the Others

    Get PDF
    Background: Previous reports identifying discordance between multiparameter tests at the individual patient level have been largely attributed to methodological shortcomings of multiple in silico studies. Comparisons between tests, when performed using actual diagnostic assays, have been predicted to demonstrate high degrees of concordance. OPTIMA prelim compared predicted risk stratification and subtype classification of different multiparameter tests performed directly on the same population. Methods: Three hundred thirteen women with early breast cancer were randomized to standard (chemotherapy and endocrine therapy) or test-directed (chemotherapy if Oncotype DX recurrence score &gt;25) treatment. Risk stratification was also determined with Prosigna (PAM50), MammaPrint, MammaTyper, NexCourse Breast (IHC4-AQUA), and conventional IHC4 (IHC4). Subtype classification was provided by Blueprint, MammaTyper, and Prosigna. Results: Oncotype DX predicted a higher proportion of tumors as low risk (82.1%, 95% confidence interval [CI] = 77.8% to 86.4%) than were predicted low/intermediate risk using Prosigna (65.5%, 95% CI = 60.1% to 70.9%), IHC4 (72.0%, 95% CI = 66.5% to 77.5%), MammaPrint (61.4%, 95% CI = 55.9% to 66.9%), or NexCourse Breast (61.6%, 95% CI = 55.8% to 67.4%). Strikingly, the five tests showed only modest agreement when dichotomizing results between high vs low/intermediate risk. Only 119 (39.4%) tumors were classified uniformly as either low/intermediate risk or high risk, and 183 (60.6%) were assigned to different risk categories by different tests, although 94 (31.1%) showed agreement between four of five tests. All three subtype tests assigned 59.5% to 62.4% of tumors to luminal A subtype, but only 121 (40.1%) were classified as luminal A by all three tests and only 58 (19.2%) were uniformly assigned as nonluminal A. Discordant subtyping was observed in 123 (40.7%) tumors. Conclusions: Existing evidence on the comparative prognostic information provided by different tests suggests that current multiparameter tests provide broadly equivalent risk information for the population of women with estrogen receptor (ER)–positive breast cancers. However, for the individual patient, tests may provide differing risk categorization and subtype information
    • …
    corecore