9 research outputs found

    Using Convolutional Neural Network to Detect and Count Individuals on Eucalyptus Plantation

    Get PDF
    Deep Learning constitutes a modern approach for image processing with considerable potential and promising results. As Deep Learning has been successfully applied to various application domains, it has also recently employedin Precision Agriculture. Taking this into account, this work proposes the use of machine learning techniques, more specifically Convolutional Neural Networks (CNN), to detect and count individuals in eucalyptus plantation images, acquired from Unmanned Aerial Vehicles (UAV). The obtained results were provided by a Faster R-CNN Resnet101, with validation procedure performed against manual human annotation. Experimental results demonstrated a overall precision of 95.77% and the affordability of the approach for forestry inventories

    Segmentação de pele e reconhecimento de gestos para interação humano-computador

    Get PDF
    This paper presents the development of a new approach to skin segmentation and hand gesture recognition in order to compose applications for Human Computer Interaction requiring real-time computing. Tests performed indicate the possibility of using the approach with low-cost equipment

    Monitoramento Automatizado de Ambientes

    Get PDF
    This paper presents the preliminary results of an automated computer vision system for the enviromnent monitoring context. For this purpose, we used the OpenSURF method to extract local features of predefined patterns from static images, and stored into a database. The proposed approach was applied over video sequences captured sequentially from three cameras, and therefore the patterns identified are converted into objects of interest in a monitored enviromnent

    Identificação de áreas quadriláteras através da detecçãao de bordas e o reconhecimento de linhas

    Get PDF
    To automate the beginning of a cutting process of a textile machine,digital image processing techniques were adopted. The solution is divided intotwo steps, first, the region of the cutting area is detected, then, we use theircoordinates on the image for perspective correction, then inside the cutting area,the detection up to 4 markers is fulfilled, where each passes through a typedefinition process, these types are the following: A; B; C and D. The marker’slocation is sent to the machine giving initiation of the cutting process

    Classificação de coloração Imuno-histoquímica em Imagens combinando Cor e Textura como Descritor de Características

    No full text
    The objective of this work is to deï¬ne a Feature Vector (FV), for staining recognition in immunohistochemistry image analysis. The FV is composed by color information and statistic measures, obtained after applying a ï¬ltering method known as Local Binary Pattern. A group of experiments was deï¬ned to evaluate the FV. After the experiments it is expected that the deï¬ned FV will increase the color recognition Precision in comparison with the FV that only considers color information

    Detecção e rastreamento de pessoas em imagens de vídeo empregando GPU

    No full text
    Two challenging tasks for building systems in Computer Vision (CV) area are people detection and tracking. Several fields of application employ these tasks for solving many problems. This paper describes the proposal of a new methodology for people detection and tracking in high-performance scenarios employing the GPU (Graphics Processing Unit). Experiments conducted with this approach demonstrate processing rates up to 80 frames per second

    Desenvolvimento de um Scanner 3D Sem Contato de Baixo Custo Usando Marcadores Artificiais

    Get PDF
    Este trabalho propõe um scanner 3D de baixo custo que utiliza uma webcam, um laser e marcadores artificiais. Dado o elevado preço da maioria dos aparelhos capazes de digitalizar objetos físicos, surgiu a motivação para propor versões de baixo custo destas ferramentas. Os conceitos e as tecnologias usadas nessa ferramenta são mostradas, e por fim um protótipo é apresentado

    Controle de Veéculo a partir da Visão Computacional

    No full text
    Detectar um caminho navegável e se manter nesse caminho é um dos principais objetivos de um veículo autônomo. Este trabalho tem a intenção de mostrar a possibilidade e eficácia de se utilizar técnicas de visão computacional e processamento digital de imagem para controlar um veículo utilizando somente visão passiva, ou seja, considerando apenas a imagem capturada por uma câmera fixada ao veículo. Um pequeno circuito de testes foi construído, para avaliar o trabalho. Os resultados dos testes indicaram que é possível manter autonomamente o veículo no caminho simulado, com diferentes tipos de terreno e em condições de variabilidade na iluminação natural, porém ainda ocorrem falhas e melhorias (hardware e software) devem ser feitas
    corecore