3 research outputs found

    Epidemiology of malaria and anemia in high and low malaria-endemic North-Eastern districts of India

    Get PDF
    Anemia and malaria are the two major public health problems that lead to substantial morbidity and mortality. Malaria infection destroys erythrocytes, resulting in low hemoglobin (Hb) levels known as anemia. Here we report the determinants of anemia in high and low malaria-endemic areas that would help understand which parasite densities, age, and gender-associated low Hb levels. Therefore, a cross-sectional mass survey (n = 8,233) was conducted to screen anemia and malaria in high and low malaria-endemic districts (HMED and LMED) of North-East India. Axillary body temperature was measured using a digital thermometer. The prevalence of anemia was found to be 55.3% (4,547/8,233), of which 45.1% had mild (2,049/4,547), 52.1% moderate (2,367/4,547) and 2.9% had severe anemia (131/4,547). Among anemic, 70.8% (3,219/4,547) resided in LMED and the rest in HMED. The median age of the anemic population was 12 years (IQR: 7–30). Overall, malaria positivity was 8.9% (734/8,233), of which HMED shared 79.6% (584/734) and LMED 20.4% (150/734) malaria burden. The village-wise malaria frequency was concordant to asymptomatic malaria (10–20%), which showed that apparently all of the malaria cases were asymptomatic in HMED. LMED population had significantly lower Hb than HMED [standardized beta (β) = −0.067, p < 0.0001] and low-density Plasmodium infections had higher Hb levels than high-density infections (β = 0.113; p = 0.031). Women of reproductive age had higher odds for malaria (OR: 1.42; 95% CI: 1.00–2.05; p = 0.04). Females (β = −0.193; p < 0.0001) and febrile individuals (β = −0.029; p = 0.008) have shown lower Hb levels, but malaria positivity did not show any effect on Hb. Young children and women of reproductive age are prone to anemia and malaria. Although there was no relation between malaria with the occurrence of anemia, we found low-density Plasmodium infections, female gender, and LMED were potential determinants of Hb

    Monitoring the efficacy of antimalarial medicines in India via sentinel sites: Outcomes and risk factors for treatment failure

    No full text
    Background & objectives: To combat the problem of antimalarial drug resistance, monitoring the changes in drug efficacy over time through periodic surveillance is essential. Since 2009, systematic and continuous monitoring is being done through nationwide sentinel site system. Potential early warning signs like partner drug resistance markers were also monitored in the clinical samples from the study areas. Methods: A total of 1864 patients with acute uncomplicated malaria were enrolled in therapeutic efficacy studies of artesunate plus sulphadoxine-pyrimethamine (AS+SP) for Plasmodium falciparum; those infected with P. vivax were given chloroquine (CQ). Polymerase chain reaction (PCR) was used to distinguish post-treatment reinfection from treatment failures. Isolates of P. falciparum were also analysed for dihydropteroate synthase (dhps) and dihydrofolate reductase (dhfr) gene mutations. Results: Overall, 1687 (91.7%) patients completed the follow-up. In most of the falciparum patients the parasitaemia was cleared within 24 h of treatment, except 12 patients who remained parasite positive after 72 h. Presence of dhfr and dhps quintuple mutation was observed predominantly in treatment failure samples. A daily dose of artesunate of 95% cases in all the sentinel sites except in Northeastern region (NE). Chloroquine remained 100% efficacious in case of P. vivax infections. Interpretation & conclusion: Till 2012, India′s national antimalarial drug resistance monitoring system proved highly efficacious and safe towards first-line antimalarials used in the country, except in Northeastern region where a decline in efficacy of AS+SP has been observed. This led to change in first-line treatment for P. falciparum to artemether-lumefantrine in Northeastern region
    corecore