20,854 research outputs found

    Combining exclusive semi-leptonic and hadronic B decays to measure |V_ub|

    Get PDF
    The Cabibbo-Kobayashi-Maskawa matrix element |V_ub| can be extracted from the rate for the semi-leptonic decay B -> pi + l + antineutrino_l, with little theoretical uncertainty, provided the hadronic form factor for the B -> pi transition can be measured from some other B decay. In here, we suggest using the decay B -> pi J\psi. This is a color suppressed decay, and it cannot be properly described within the usual factorization approximation; we use instead a simple and very general phenomenological model for the b d J\psi vertex. In order to relate the hadronic form factors in the B -> pi J\psi and B -> pi + l + antineutrino_l decays, we use form factor relations that hold for heavy-to-light transitions at large recoil.Comment: Latex, 7 pages, no figure

    Strong evidences for a nonextensive behavior of the rotation period in Open Clusters

    Full text link
    Time-dependent nonextensivity in a stellar astrophysical scenario combines nonextensive entropic indices qKq_{K} derived from the modified Kawaler's parametrization, and qq, obtained from rotational velocity distribution. These qq's are related through a heuristic single relation given by qq0(1Δt/qK)q\approx q_{0}(1-\Delta t/q_{K}), where tt is the cluster age. In a nonextensive scenario, these indices are quantities that measure the degree of nonextensivity present in the system. Recent studies reveal that the index qq is correlated to the formation rate of high-energy tails present in the distribution of rotation velocity. On the other hand, the index qKq_{K} is determined by the stellar rotation-age relationship. This depends on the magnetic field configuration through the expression qK=1+4aN/3q_{K}=1+4aN/3, where aa and NN denote the saturation level of the star magnetic field and its topology, respectively. In the present study, we show that the connection qqKq-q_{K} is also consistent with 548 rotation period data for single main-sequence stars in 11 Open Clusters aged less than 1 Gyr. The value of qKq_{K}\sim 2.5 from our unsaturated model shows that the mean magnetic field topology of these stars is slightly more complex than a purely radial field. Our results also suggest that stellar rotational braking behavior affects the degree of anti-correlation between qq and cluster age tt. Finally, we suggest that stellar magnetic braking can be scaled by the entropic index qq.Comment: 6 pages and 2 figures, accepted to EPL on October 17, 201

    Detrended Fluctuation Analysis of Systolic Blood Pressure Control Loop

    Full text link
    We use detrended fluctuation analysis (DFA) to study the dynamics of blood pressure oscillations and its feedback control in rats by analyzing systolic pressure time series before and after a surgical procedure that interrupts its control loop. We found, for each situation, a crossover between two scaling regions characterized by exponents that reflect the nature of the feedback control and its range of operation. In addition, we found evidences of adaptation in the dynamics of blood pressure regulation a few days after surgical disruption of its main feedback circuit. Based on the paradigm of antagonistic, bipartite (vagal and sympathetic) action of the central nerve system, we propose a simple model for pressure homeostasis as the balance between two nonlinear opposing forces, successfully reproducing the crossover observed in the DFA of actual pressure signals

    The Mass-to-Light Ratio of Binary Galaxies

    Get PDF
    We report on the mass-to-light ratio determination based on a newly selected binary galaxy sample, which includes a large number of pairs whose separations exceed a few hundred kpc. The probability distributions of the projected separation and the velocity difference have been calculated considering the contamination of optical pairs, and the mass-to-light ratio has been determined based on the maximum likelihood method. The best estimate of M/LM/L in the B band for 57 pairs is found to be 28 \sim 36 depending on the orbital parameters and the distribution of optical pairs (solar unit, H0=50H_0=50 km s1^{-1} Mpc1^{-1}). The best estimate of M/LM/L for 30 pure spiral pairs is found to be 12 \sim 16. These results are relatively smaller than those obtained in previous studies, but consistent with each other within the errors. Although the number of pairs with large separation is significantly increased compared to previous samples, M/LM/L does not show any tendency of increase, but found to be almost independent of the separation of pairs beyond 100 kpc. The constancy of M/LM/L beyond 100 kpc may indicate that the typical halo size of spiral galaxies is less than 100\sim 100 kpc.Comment: 18 pages + 8 figures, to appear in ApJ Vol. 516 (May 10

    Current advances in the bacterial toolbox for the biotechnological production of monoterpene-based aroma compounds

    Get PDF
    Monoterpenes are plant secondary metabolites, widely used in industrial processes as precursors of important aroma compounds, such as vanillin and (−)-menthol. However, the physicochemical properties of monoterpenes make difficult their conventional conversion into value-added aromas. Biocatalysis, either by using whole cells or enzymes, may overcome such drawbacks in terms of purity of the final product, ecological and economic constraints of the current catalysis processes or extraction from plant material. In particular, the ability of oxidative enzymes (e.g., oxygenases) to modify the monoterpene backbone, with high regio- and stereo-selectivity, is attractive for the production of “natural” aromas for the flavor and fragrances industries. We review the research efforts carried out in the molecular analysis of bacterial monoterpene catabolic pathways and biochemical characterization of the respective key oxidative enzymes, with particular focus on the most relevant precursors, β-pinene, limonene and β-myrcene. The presented overview of the current state of art demonstrates that the specialized enzymatic repertoires of monoterpene-catabolizing bacteria are expanding the toolbox towards the tailored and sustainable biotechnological production of values-added aroma compounds (e.g., isonovalal, α-terpineol, and carvone isomers) whose implementation must be supported by the current advances in systems biology and metabolic engineering approaches.This work was supported by the project VALEU (PTDC/EAM-AMB/30488/2017); by the strategic program UID/BIA/04050/2019 through the Fundação para a Ciência e a Tecnologia (FCT) I.P.; and by the European Regional Development Fund (ERDF) through the COMPETE2020-Programa Operacional Competitividade e Internacionalização (POCI). The work was also supported by a Ph.D grant (grant number PD/BD/146184/2019) to F.S

    Chaos and a Resonance Mechanism for Structure Formation in Inflationary Models

    Get PDF
    We exhibit a resonance mechanism of amplification of density perturbations in inflationary mo-dels, using a minimal set of ingredients (an effective cosmological constant, a scalar field minimally coupled to the gravitational field and matter), common to most models in the literature of inflation. This mechanism is based on the structure of homoclinic cylinders, emanating from an unstable periodic orbit in the neighborhood of a saddle-center critical point, present in the phase space of the model. The cylindrical structure induces oscillatory motions of the scales of the universe whenever the orbit visits the neighborhood of the saddle-center, before the universe enters a period of exponential expansion. The oscillations of the scale functions produce, by a resonance mechanism, the amplification of a selected wave number spectrum of density perturbations, and can explain the hierarchy of scales observed in the actual universe. The transversal crossings of the homoclinic cylinders induce chaos in the dynamics of the model, a fact intimately connected to the resonance mechanism occuring immediately before the exit to inflation.Comment: 4 pages. This essay received an Honorable Mention from the Gravity Research Foundation, 1998-Ed. To appear in Mod. Phys. Lett.
    corecore