20 research outputs found

    Metabolite Profile and Immunomodulatory Properties of Bellflower Root Vinegar Produced Using Acetobacter pasteurianus A11-2

    No full text
    Fermented vinegar is prepared from grains and medicinal plants. Here, we produced vinegar from peeled and unpeeled roots of bellflowers (Platycodon grandiflorum) using Acetobacter pasteurianus A11-2 and analyzed bellflower vinegar (BV) samples using gas chromatography–mass spectrometry and quadrupole time-of-flight mass spectrometry over 15 days of fermentation to assess the quality. We also evaluated their antibacterial and immunoenhancing effects using RAW 264.7 macrophage cells. The major metabolites in BV are organic acids, with the main volatile compounds being ethyl acetate, isoamyl acetate, 1-pentanol, hydroxypropanoic acid, and malonic acid. When we fermented BV from unpeeled roots for 10 days with a starter culture, we observed significant antibacterial and immunoenhancing effects in macrophages. Therefore, we could determine the metabolite and functional differences in vinegar obtained from bellflower roots and proposed that bellflower roots with peel are an effective substrate for developing vinegar and healthy food products

    Shikonin Attenuates Hepatic Steatosis by Enhancing Beta Oxidation and Energy Expenditure via AMPK Activation

    No full text
    Shikonin, a natural plant pigment, is known to have anti-obesity activity and to improve insulin sensitivity. This study aimed to examine the effect of shikonin on hepatic steatosis, focusing on the AMP-activated protein kinase (AMPK) and energy expenditure in Hepa 1-6 cells and in high-fat fed mice. Shikonin increased AMPK phosphorylation in a dose- and time-dependent manner, and inhibition of AMPK with compound C inhibited this activation. In an oleic acid-induced steatosis model in hepatocytes, shikonin suppressed oleic acid-induced lipid accumulation, increased AMPK phosphorylation, suppressed the expression of lipogenic genes, and stimulated fatty acid oxidation-related genes. Shikonin administration for four weeks decreased body weight gain and the accumulation of lipid droplets in the liver of high-fat fed mice. Furthermore, shikonin promoted energy expenditure by activating fatty acid oxidation. In addition, shikonin increased the expression of PPARγ coactivator-1α (PGC-1α), carnitine palmitoyltransferase-1 (CPT1) and other mitochondrial function-related genes. These results suggest that shikonin attenuated a high fat diet-induced nonalcoholic fatty liver disease by stimulating fatty acid oxidation and energy expenditure via AMPK activation

    Comparative Evaluation of Quality and Metabolite Profiles in Meju Using Starter Cultures of Bacillus velezensis and Aspergillus oryzae

    No full text
    The production of good Meju soybean paste primarily depends on the selection of raw materials and fermenting microorganisms, which together influence its characteristic metabolites, taste, and aroma. In this study, we analyzed the relationship between properties and metabolites in Meju samples fermented by Aspergillus oryzae alone or with Bacillus velezensis. We developed fast-stable processing techniques to obtain Meju from A. oryzae and B. velezensis using the inoculation method, thereby ensuring safety in the production of soybean paste. The amino-type nitrogen content increased from an initial 180–228 mg% to a final 226–776 mg% during fermentation and was higher in Meju inoculated separately with the fungi and bacteria (C group) than in Meju co-inoculated with both the starters concurrently (D group). The levels of metabolites such as glucose, myo-inositol, glycerol, and fatty acids (palmitic, stearic, oleic, and linoleic acids) in Meju fermented by A. oryzae with B. velezensis were higher than those in Meju fermented by A. oryzae alone. Fungal growth was affected by the inoculated bacteria, which often occurs during the fermentation of co-inoculated Meju

    Safety Evaluation of Weissella cibaria JW15 by Phenotypic and Genotypic Property Analysis

    No full text
    Weissella cibaria is one of the bacteria in charge of the initial fermentation of kimchi and has beneficial effects such as immune-modulating, antagonistic, and antioxidant activities. In our study, we aimed to estimate the safety of W. cibaria JW15 for the use of probiotics according to international standards based on phenotypic (antibiotic resistance, hemolysis, and toxic metabolite production) and genotypic analysis (virulence genes including antibiotic resistance genes). The results of the safety assessment on W. cibaria JW15 were as follows; (1) antibiotic resistance genes (ARGs) (kanamycin and vancomycin etc.) were intrinsic characteristics; (2) There were no acquired virulence genes including Cytolysin (cylA), aggregation substance (asa1), Hyaluronidase (hyl), and Gelatinase (gelE); (3) this strain also lacked β-hemolysis and the production of toxic metabolites (D-lactate and bile salt deconjugation). Consequently, W. cibaria JW15 is expected to be applied as a functional food ingredient in the food market

    Surgical Removal of Migrated Coil after Embolization of Jejunal Variceal Bleeding: A Case Report

    No full text
    Jejunal variceal bleeding is less common compared with esophagogastric varices in patients with portal hypertension. However, jejunal variceal bleeding can be fatal without treatment. Treatments include surgery, transjugular intrahepatic porto-systemic shunt (TIPS), endoscopic sclerotherapy, percutaneous coil embolization, and balloon-occluded retrograde transvenous obliteration (BRTO). Percutaneous coil embolization can be considered as an alternative treatment option for those where endoscopic sclerotherapy, surgery, TIPS or BRTO are not possible. Complications of percutaneous coil embolization have been reported, including coil migration. Herein, we report a case of migration of the coil into the jejunal lumen after percutaneous coil embolization for jejunal variceal bleeding. The migrated coil was successfully removed using surgery

    The Effect of Thickness of Resorbable Bacterial Cellulose Membrane on Guided Bone Regeneration

    No full text
    This study introduces the effect of the thickness of a bacterial cellulose membrane by comparing the bone regeneration effect on rat skulls when using a collagen membrane and different thicknesses of resorbable bacterial cellulose membranes for guided bone regeneration. Barrier membranes of 0.10 mm, 0.15 mm, and 0.20 mm in thickness were made using bacterial cellulose produced as microbial fermentation metabolites. Mechanical strength was investigated, and new bone formation was evaluated through animal experimental studies. Experimental animals were sacrificed after having 2 weeks and 8 weeks of recovery, and specimens were processed for histologic and histomorphometric analyses measuring the area of bone regeneration (%) using an image analysis program. In 2 weeks, bone-like materials and fibrous connective tissues were observed in histologic analysis. In 8 weeks, all experimental groups showed the arrangement of osteoblasts surrounding the supporting body on the margin and center of the bone defect region. However, the amount of new bone formation was significantly higher (p < 0.05) in bacterial cellulose membrane with 0.10 mm in thickness compared to the other experimental groups. Within the limitations of this study, a bacterial cellulose membrane with 0.10 mm thickness induced the most effective bone regeneration

    3D Bioprinting of Multi-layered Tubular Constructs using Esophageal Tissue-derived Bioinks for Esophageal Regeneration

    No full text
    The esophagus is located between the pharynx and stomach. It has a hollow passageway structure that allows food to pass into the stomach. The incidence of esophageal diseases such as esophageal cancer, esophageal stenosis, and esophageal atresia is increasing, but recovery is difficult because of the weak esophageal regenerative ability. So, the treatments are performed esophageal resection and reconstruction with a gastric pull-up, jejunal free flap. These methods are prone to necrosis, sepsis, other complications, and in severe cases, death. [1] Therefore, an alternative to existing treatments is needed. A tissue engineering-based approach has been spotlighted recently. Most of the hollow structures being researched are manufactured by electrospinning on the drum collector. However, it is difficult to produce free-form and multilayer structures and has poor mechanical properties. [2] In this study, we developed an esophageal alternative construct by a new 3D printing technique that stretches when the material is ejected through the nozzle. Moreover, the decellularized esophageal bioinks were fabricated that mimic the composition of the esophageal tissue and the microenvironment of each layer and were printed. The construct has not only to produce a porous, free-form, multi-layered, and hollow structure but also mimic the morphological and structural characteristics of the actual esophagus.2
    corecore