347 research outputs found

    The Effect of Negative CSR Information by Luxury Fashion Brands on Consumer Response

    Get PDF
    Contrary to positive corporate social responsibility (CSR) activities by luxury fashion brands in western countries, little attention has been paid by the same companies to Korean society (FSS, 2012). South Korea is poised to be the next luxury power house in Asia, even overtaking Japan (Luxe Brand Advisors, 2012). Are Korean consumers not as sensitive as western consumers about CSR by luxury fashion brands? To answer these questions, this study explores the effect of negative CSR information by luxury fashion companies on consumer responses

    Portulaca oleracea Ameliorates Diabetic Vascular Inflammation and Endothelial Dysfunction in db/db Mice

    Get PDF
    Type 2 diabetes is associated with significantly accelerated rates of micro- and macrovascular complications such as diabetic vascular inflammation and endothelial dysfunction. In the present study, we investigated the protective effect of the aqueous extract of Portulaca oleracea L. (AP), an edible plant used as a folk medicine, on diabetic vascular complications. The db/db mice were treated with AP (300 mg/kg/day, p.o.) for 10 weeks, and AP treatment markedly lowered blood glucose, plasma triglyceride, plasma level of LDL-cholesterol, and systolic blood pressure in diabetic db/db mice. Furthermore, AP significantly increased plasma level of HDL-cholesterol and insulin level. The impairment of ACh- and SNP-induced vascular relaxation of aortic rings were ameliorated by AP treatment in diabetic db/db mice. This study also showed that overexpression of VCAM-1, ICAM-1, E-selectin, MMP-2, and ET-1 were observed in aortic tissues of untreated db/db mice, which were significantly suppressed by treatment with AP. We also found that the insulin immunoreactivity of the pancreatic islets remarkably increased in AP treated db/db mice compared with untreated db/db mice. Taken together, AP suppresses hyperglycemia and diabetic vascular inflammation, and prevents the development of diabetic endothelial dysfunction for the development of diabetes and its vascular complications

    Cell type–dependent variation in paracrine potency determines therapeutic efficacy against neonatal hyperoxic lung injury

    Get PDF
    AbstractBackground aimsThe aim of this study was to determine the optimal cell type for transplantation to protect against neonatal hyperoxic lung injury. To this end, the in vitro and in vivo therapeutic efficacies and paracrine potencies of human umbilical cord blood–derived mesenchymal stromal cells (HUMs), human adipose tissue–derived mesenchymal stromal cells (HAMs) and human umbilical cord blood mononuclear cells (HMNs) were compared.MethodsHyperoxic injury was induced in vitro in A549 cells by challenge with H2O2. Alternatively, hyperoxic injury was induced in newborn Sprague-Dawley rats in vivo by exposure to hyperoxia (90% oxygen) for 14 days. HUMs, HAMs or HMNs (5 × 105 cells) were given intratracheally at postnatal day 5.ResultsHyperoxia-induced increases in in vitro cell death and in vivo impaired alveolarization were significantly attenuated in both the HUM and HAM groups but not in the HMN group. Hyperoxia impaired angiogenesis, increased the cell death and pulmonary macrophages and elevated inflammatory cytokine levels. These effects were significantly decreased in the HUM group but not in the HAM or HMN groups. The levels of human vascular endothelial growth factor and hepatocyte growth factor produced by donor cells were highest in HUM group, followed by HAM group and then HMN group.ConclusionsHUMs exhibited the best therapeutic efficacy and paracrine potency than HAMs or HMNs in protecting against neonatal hyperoxic lung injury. These cell type-dependent variations in therapeutic efficacy might be associated or mediated with the paracrine potency of the transplanted donor cells

    Effect of Poria cocos

    Get PDF
    Nephrotic syndrome is associated with altered renal handling of water and sodium and changes in the levels of aquaporins (AQPs) and epithelial Na channels (ENaCs). The dried sclerotia of Poria cocos Wolf (WPC) have been used for treating chronic edema and nephrosis. We evaluated the effects of WPC on puromycin aminonucleoside- (PAN-) induced renal functional derangement and altered renal AQP2 and ENaC expression. In the nephrotic syndrome rat model, animals were injected with 75 mg/kg PAN and then treated with Losartan (30 mg·kg−1·day−1) or WPC (200 mg·kg−1·day−1) for 7 days. In the WPC group, proteinuria and ascites improved significantly. Plasma levels of triglyceride, total cholesterol, and low-density lipoprotein- (LDL-) cholesterol reduced significantly in the WPC group. In addition, the WPC group exhibited attenuation of the PAN-induced increase in AQP2 and ENaC α/β subunit protein and mRNA levels. WPC suppressed significantly PAN-induced organic osmolyte regulators, reducing serum- and glucocorticoid-inducible protein kinase (Sgk1) and sodium-myo-inositol cotransporter (SMIT) mRNA expression. Our results show that WPC improves nephrotic syndrome, including proteinuria and ascites, through inhibition of AQP2 and ENaC expression. Therefore, WPC influences body-fluid regulation via inhibition of water and sodium channels, thereby, improving renal disorders such as edema or nephrosis

    Idiopathic severe hypermagnesemia in an extremely low birth weight infant on the first day of life

    Get PDF
    A preterm female infant born at 27 weeks of gestation with a birth weight of 990 g developed acute hypotonia, apnea, hypotension and bradycardia mimicking septic shock syndrome at 14h after birth. Laboratory tests indicated a severe hypermagnesemia of 45 mg/dL. The renal function, complete blood count and maternal blood concentrations of magnesium were normal, and the blood cultures were negative. The patient recovered with treatment including exchange transfusion. However, the etiology of the severe hypermagnesemia remains unknown

    Systematic identification of an integrative network module during senescence from time-series gene expression

    Get PDF
    Background: Cellular senescence irreversibly arrests growth of human diploid cells. In addition, recent studies have indicated that senescence is a multi-step evolving process related to important complex biological processes. Most studies analyzed only the genes and their functions representing each senescence phase without considering gene-level interactions and continuously perturbed genes. It is necessary to reveal the genotypic mechanism inferred by affected genes and their interaction underlying the senescence process. Results: We suggested a novel computational approach to identify an integrative network which profiles an underlying genotypic signature from time-series gene expression data. The relatively perturbed genes were selected for each time point based on the proposed scoring measure denominated as perturbation scores. Then, the selected genes were integrated with protein-protein interactions to construct time point specific network. From these constructed networks, the conserved edges across time point were extracted for the common network and statistical test was performed to demonstrate that the network could explain the phenotypic alteration. As a result, it was confirmed that the difference of average perturbation scores of common networks at both two time points could explain the phenotypic alteration. We also performed functional enrichment on the common network and identified high association with phenotypic alteration. Remarkably, we observed that the identified cell cycle specific common network played an important role in replicative senescence as a key regulator. Conclusions: Heretofore, the network analysis from time series gene expression data has been focused on what topological structure was changed over time point. Conversely, we focused on the conserved structure but its context was changed in course of time and showed it was available to explain the phenotypic changes. We expect that the proposed method will help to elucidate the biological mechanism unrevealed by the existing approaches.1

    Eccrine Angiomatous Hamartoma Mimicking a Traumatic Hemorrhage

    Get PDF
    Eccrine angiomatous hamartoma (EAH) is a rare benign disease that is characterized by an abnormal proliferation of eccrine glands and vascular elements. It is generally congenital, but it can appear before puberty. It usually presents as a single plaque or nodule, but multiple patch-like lesions are also possible. EAH is mostly asymptomatic, but it is sometimes associated with pain or hyperhidrosis. It generally does not require aggressive treatment, but the lesion can be excised due to pain, enlargement and cosmetic reasons. A 3-week-old Korean female presented with a hemorrhagic skin lesion on the right foot since birth. There was no specific birth history. The lesion first appeared on the third toe of the right foot and quickly spread to almost half of the right foot. Histopathology examination revealed acanthosis in the epidermis and a proliferation of eccrine ducts, glands and capillaries. The eccrine glands were immunohistochemically-positive for carcinoembryonic antigen
    corecore