10,403 research outputs found
Extended Optical Model Analyses of Elastic Scattering and Fusion Cross Section Data for the C+Pb System at Near-Coulomb-Barrier Energies by using a Folding Potential
Simultaneous analyses are performed for elastic scattering and
fusion cross section data for the C+Pb system at
near-Coulomb-barrier energies by using the extended optical model approach in
which the polarization potential is decomposed into direct reaction (DR) and
fusion parts. Use is made of the double folding potential as a bare potential.
It is found that the experimental elastic scattering and fusion data are well
reproduced without introducing any normalization factor for the double folding
potential and also that both DR and fusion parts of the polarization potential
determined from the analyses satisfy separately the dispersion
relation. Furthermore, it is shown that the imaginary parts of both DR and
fusion potentials at the strong absorption radius change very rapidly, which
results in a typical threshold anomaly in the total imaginary potential as
observed with tightly bound projectiles such as -particle and O.Comment: 26 pages, 7 figures, submitted to Physical Review
Extended Optical Model Analyses of Elastic Scattering and Fusion Cross Section Data for the 7Li+208Pb System at Near-Coulomb-Barrier Energies using the Folding Potential
Simultaneous analyses previously made for elastic scattering and
fusion cross section data for the Li+Pb system is extended to the
Li+Pb system at near-Coulomb-barrier energies based on the
extended optical model approach, in which the polarization potential is
decomposed into direct reaction (DR) and fusion parts. Use is made of the
double folding potential as a bare potential. It is found that the experimental
elastic scattering and fusion data are well reproduced without introducing any
normalization factor for the double folding potential and that both the DR and
fusion parts of the polarization potential determined from the
analyses satisfy separately the dispersion relation. Further, we find that the
real part of the fusion portion of the polarization potential is attractive
while that of the DR part is repulsive except at energies far below the Coulomb
barrier energy. A comparison is made of the present results with those obtained
from the Continuum Discretized Coupled Channel (CDCC) calculations and a
previous study based on the conventional optical model with a double folding
potential. We also compare the present results for the Li+Pb system
with the analysis previously made for the Li+Pb system.Comment: 7 figures, submitted to PR
Pendekatan Keadilan melalui Silaisme dan Standarisasi Pidana (Penyusunan Pola Pidana)
“Sila” itself in Pancasila is misinterpreted, making it difficult to be actualized. Sila, properly interpreted as a doctrine/precept supported by freedom is referred as “Silaism”. Silaism needs to be supported by the standardization of sanction, considering within the practice of the criminal law system, sanction occupies a central position. Both the KUHP (Criminal Code) and the laws outside of KUHP regulates delict and sanction as one and both act more individually, where each delict has its own sanction. Sanctions may differ between the KUHP and laws outside of KUHP, thus bringing conflict between norms and disparities. Therefore, a new sanction standardization is needed. To achieve “Justice”, both Silaism and sanction standardization are vital
Gravitational energy from a combination of a tetrad expression and Einstein's pseudotensor
The energy-momentum for a gravitating system can be considered by the tetard
teleparalle gauge current in orthonormal frames. Whereas the Einstein
pseudotensor used holonomic frames. Tetrad expression itself gives a better
result for gravitational energy than Einstein's. Inspired by an idea of Deser,
we found a gravitational energy expression which enjoys the positive energy
property by combining the tetrad expression and the Einstein pseudotensor,
i.e., the connection coefficient has a form appropriate to a suitable
intermediate between orthonormal and holonomic frames.Comment: 5 page
Extended Optical Model Analyses of Elastic Scattering and Fusion Cross Sections for 6Li + 208Pb System at Near-Coulomb-Barrier Energies by using Folding Potential
Based on the extended optical model approach in which the polarization
potential is decomposed into direct reaction (DR) and fusion parts,
simultaneous analyses are performed for elastic scattering and
fusion cross section data for the Li+Pb system at
near-Coulomb-barrier energies. A folding potential is used as the bare
potential. It is found that the real part of the resultant DR part of the
polarization potential is repulsive, which is consistent with the results from
the Continuum Discretized Coupled Channel (CDCC) calculations and the
normalization factors needed for the folding potentials. Further, it is found
that both DR and fusion parts of the polarization potential satisfy separately
the dispersion relation.Comment: 6 figure
Extended Optical Model Analyses of Elastic Scattering, Direct Reaction, and Fusion Cross Sections for the 9Be + 208Pb System at Near-Coulomb-Barrier Energies
Based on the extended optical model approach in which the polarization
potential is decomposed into direct reaction (DR) and fusion parts,
simultaneous analyses are performed for elastic scattering, DR, and
fusion cross section data for the Be+Pb system at
near-Coulomb-barrier energies. Similar analyses are also performed
by only taking into account the elastic scattering and fusion data as was
previously done by the present authors, and the results are compared with those
of the full analysis including the DR cross section data as well. We find that
the analyses using only elastic scattering and fusion data can produce very
consistent and reliable predictions of cross sections particularly when the DR
cross section data are not complete. Discussions are also given on the results
obtained from similar analyses made earlier for the Be+Bi system.Comment: 5 figure
Artificial scaling laws of the dynamical magnetic susceptibility in heavy-fermion systems
We report here how artificial, thus erroneous, scaling laws of the dynamical
magnetic susceptibility can be obtained when data are not treated carefully. We
consider the example of the heavy-fermion system
CeLaRuSi and we explain how different kinds of
artificial scaling laws in can be plotted in a low temperature
regime where the dynamical susceptibility is nearly temperature independent.Comment: 4 pages, 4 figure
Cug2 is essential for normal mitotic control and CNS development in zebrafish.
Background:
We recently identified a novel oncogene, Cancer-upregulated gene 2 (CUG2), which is essential for kinetochore formation and promotes tumorigenesis in mammalian cells. However, the in vivo function of CUG2 has not been studied in animal models.
Results:
To study the function of CUG2 in vivo, we isolated a zebrafish homologue that is expressed specifically in the proliferating cells of the central nervous system (CNS). Morpholino-mediated knockdown of cug2 resulted in apoptosis throughout the CNS and the development of neurodegenerative phenotypes. In addition, cug2-deficient embryos contained mitotically arrested cells displaying abnormal spindle formation and chromosome misalignment in the neural plate.
Conclusions:
Therefore, our findings suggest that Cug2 is required for normal mitosis during early neurogenesis and has functions in neuronal cell maintenance, thus demonstrating that the cug2 deficient embryos may provide a model system for human neurodegenerative disorders
Gravitational energy in a small region for the modified Einstein and Landau-Lifshitz pseudotensors
The purpose of the classical Einstein and Landau-Lifshitz pseudotensors is
for determining the gravitational energy. Neither of them can guarantee a
positive energy in holonomic frames. In the small sphere approximation, it has
been required that the quasilocal expression for the gravitational
energy-momentum density should be proportional to the Bel-Robinson tensor
. However, we propose a new tensor
which is the sum of certain tensors
and , it has certain properties
so that it gives the same gravitational "energy-momentum" content as
does. Moreover, we show that a modified Einstein
pseudotensor turns out to be one of the Chen-Nester quasilocal expressions,
while the modified Landau-Lifshitz pseudotensor becomes the Papapetrou
pseudotensor; these two modified pseudotensors have positive gravitational
energy in a small region.Comment:
New positive small vacuum region gravitational energy expressions
We construct an infinite number of new holonomic quasi-local gravitational
energy-momentum density pseudotensors with good limits asymptotically and in
small regions, both materially and in vacuum. For small vacuum regions they are
all a positive multiple of the Bel-Robinson tensor and consequently have
positive energy.Comment: 4 page
- …