10,403 research outputs found

    Extended Optical Model Analyses of Elastic Scattering and Fusion Cross Section Data for the 12^{12}C+208^{208}Pb System at Near-Coulomb-Barrier Energies by using a Folding Potential

    Full text link
    Simultaneous χ2\chi^{2} analyses are performed for elastic scattering and fusion cross section data for the 12^{12}C+208^{208}Pb system at near-Coulomb-barrier energies by using the extended optical model approach in which the polarization potential is decomposed into direct reaction (DR) and fusion parts. Use is made of the double folding potential as a bare potential. It is found that the experimental elastic scattering and fusion data are well reproduced without introducing any normalization factor for the double folding potential and also that both DR and fusion parts of the polarization potential determined from the χ2\chi^{2} analyses satisfy separately the dispersion relation. Furthermore, it is shown that the imaginary parts of both DR and fusion potentials at the strong absorption radius change very rapidly, which results in a typical threshold anomaly in the total imaginary potential as observed with tightly bound projectiles such as α\alpha-particle and 16^{16}O.Comment: 26 pages, 7 figures, submitted to Physical Review

    Extended Optical Model Analyses of Elastic Scattering and Fusion Cross Section Data for the 7Li+208Pb System at Near-Coulomb-Barrier Energies using the Folding Potential

    Full text link
    Simultaneous χ2\chi^{2} analyses previously made for elastic scattering and fusion cross section data for the 6^{6}Li+208^{208}Pb system is extended to the 7^{7}Li+208^{208}Pb system at near-Coulomb-barrier energies based on the extended optical model approach, in which the polarization potential is decomposed into direct reaction (DR) and fusion parts. Use is made of the double folding potential as a bare potential. It is found that the experimental elastic scattering and fusion data are well reproduced without introducing any normalization factor for the double folding potential and that both the DR and fusion parts of the polarization potential determined from the χ2\chi^{2} analyses satisfy separately the dispersion relation. Further, we find that the real part of the fusion portion of the polarization potential is attractive while that of the DR part is repulsive except at energies far below the Coulomb barrier energy. A comparison is made of the present results with those obtained from the Continuum Discretized Coupled Channel (CDCC) calculations and a previous study based on the conventional optical model with a double folding potential. We also compare the present results for the 7^7Li+208^{208}Pb system with the analysis previously made for the 6^{6}Li+208^{208}Pb system.Comment: 7 figures, submitted to PR

    Pendekatan Keadilan melalui Silaisme dan Standarisasi Pidana (Penyusunan Pola Pidana)

    Get PDF
    “Sila” itself in Pancasila is misinterpreted, making it difficult to be actualized. Sila, properly interpreted as a doctrine/precept supported by freedom is referred as “Silaism”. Silaism needs to be supported by the standardization of sanction, considering within the practice of the criminal law system, sanction occupies a central position. Both the KUHP (Criminal Code) and the laws outside of KUHP regulates delict and sanction as one and both act more individually, where each delict has its own sanction. Sanctions may differ between the KUHP and laws outside of KUHP, thus bringing conflict between norms and disparities. Therefore, a new sanction standardization is needed. To achieve “Justice”, both Silaism and sanction standardization are vital

    Gravitational energy from a combination of a tetrad expression and Einstein's pseudotensor

    Full text link
    The energy-momentum for a gravitating system can be considered by the tetard teleparalle gauge current in orthonormal frames. Whereas the Einstein pseudotensor used holonomic frames. Tetrad expression itself gives a better result for gravitational energy than Einstein's. Inspired by an idea of Deser, we found a gravitational energy expression which enjoys the positive energy property by combining the tetrad expression and the Einstein pseudotensor, i.e., the connection coefficient has a form appropriate to a suitable intermediate between orthonormal and holonomic frames.Comment: 5 page

    Extended Optical Model Analyses of Elastic Scattering and Fusion Cross Sections for 6Li + 208Pb System at Near-Coulomb-Barrier Energies by using Folding Potential

    Get PDF
    Based on the extended optical model approach in which the polarization potential is decomposed into direct reaction (DR) and fusion parts, simultaneous χ2\chi^{2} analyses are performed for elastic scattering and fusion cross section data for the 6^{6}Li+208^{208}Pb system at near-Coulomb-barrier energies. A folding potential is used as the bare potential. It is found that the real part of the resultant DR part of the polarization potential is repulsive, which is consistent with the results from the Continuum Discretized Coupled Channel (CDCC) calculations and the normalization factors needed for the folding potentials. Further, it is found that both DR and fusion parts of the polarization potential satisfy separately the dispersion relation.Comment: 6 figure

    Extended Optical Model Analyses of Elastic Scattering, Direct Reaction, and Fusion Cross Sections for the 9Be + 208Pb System at Near-Coulomb-Barrier Energies

    Full text link
    Based on the extended optical model approach in which the polarization potential is decomposed into direct reaction (DR) and fusion parts, simultaneous χ2\chi^{2} analyses are performed for elastic scattering, DR, and fusion cross section data for the 9^{9}Be+208^{208}Pb system at near-Coulomb-barrier energies. Similar χ2\chi^{2} analyses are also performed by only taking into account the elastic scattering and fusion data as was previously done by the present authors, and the results are compared with those of the full analysis including the DR cross section data as well. We find that the analyses using only elastic scattering and fusion data can produce very consistent and reliable predictions of cross sections particularly when the DR cross section data are not complete. Discussions are also given on the results obtained from similar analyses made earlier for the 9^{9}Be+209^{209}Bi system.Comment: 5 figure

    Artificial scaling laws of the dynamical magnetic susceptibility in heavy-fermion systems

    Full text link
    We report here how artificial, thus erroneous, scaling laws of the dynamical magnetic susceptibility can be obtained when data are not treated carefully. We consider the example of the heavy-fermion system Ce0.925_{0.925}La0.075_{0.075}Ru2_{2}Si2_{2} and we explain how different kinds of artificial scaling laws in E/TβE/T^\beta can be plotted in a low temperature regime where the dynamical susceptibility is nearly temperature independent.Comment: 4 pages, 4 figure

    Cug2 is essential for normal mitotic control and CNS development in zebrafish.

    Get PDF
    Background: We recently identified a novel oncogene, Cancer-upregulated gene 2 (CUG2), which is essential for kinetochore formation and promotes tumorigenesis in mammalian cells. However, the in vivo function of CUG2 has not been studied in animal models. Results: To study the function of CUG2 in vivo, we isolated a zebrafish homologue that is expressed specifically in the proliferating cells of the central nervous system (CNS). Morpholino-mediated knockdown of cug2 resulted in apoptosis throughout the CNS and the development of neurodegenerative phenotypes. In addition, cug2-deficient embryos contained mitotically arrested cells displaying abnormal spindle formation and chromosome misalignment in the neural plate. Conclusions: Therefore, our findings suggest that Cug2 is required for normal mitosis during early neurogenesis and has functions in neuronal cell maintenance, thus demonstrating that the cug2 deficient embryos may provide a model system for human neurodegenerative disorders

    Gravitational energy in a small region for the modified Einstein and Landau-Lifshitz pseudotensors

    Full text link
    The purpose of the classical Einstein and Landau-Lifshitz pseudotensors is for determining the gravitational energy. Neither of them can guarantee a positive energy in holonomic frames. In the small sphere approximation, it has been required that the quasilocal expression for the gravitational energy-momentum density should be proportional to the Bel-Robinson tensor BαβμνB_{\alpha\beta\mu\nu}. However, we propose a new tensor VαβμνV_{\alpha\beta\mu\nu} which is the sum of certain tensors SαβμνS_{\alpha\beta\mu\nu} and KαβμνK_{\alpha\beta\mu\nu}, it has certain properties so that it gives the same gravitational "energy-momentum" content as BαβμνB_{\alpha\beta\mu\nu} does. Moreover, we show that a modified Einstein pseudotensor turns out to be one of the Chen-Nester quasilocal expressions, while the modified Landau-Lifshitz pseudotensor becomes the Papapetrou pseudotensor; these two modified pseudotensors have positive gravitational energy in a small region.Comment:

    New positive small vacuum region gravitational energy expressions

    Full text link
    We construct an infinite number of new holonomic quasi-local gravitational energy-momentum density pseudotensors with good limits asymptotically and in small regions, both materially and in vacuum. For small vacuum regions they are all a positive multiple of the Bel-Robinson tensor and consequently have positive energy.Comment: 4 page
    • …
    corecore