300 research outputs found
Adiponectin Mediates Running-Restored Hippocampal Neurogenesis in Streptozotocin-Induced Type 1 Diabetes in Mice
Streptozotocin (STZ)-induced diabetes impairs learning and memory performance and reduces adult hippocampal neurogenesis. Physical exercise brings beneficial effects. We have previously shown that adiponectin, an adipocyte-secreted hormone critically involved in the pathology of diabetes, is a key mediator for exercise-enhanced adult hippocampal neurogenesis. Here, we tested whether adiponectin is required for exercise to restore adult hippocampal neurogenesis in an animal model of diabetes. The findings showed that a single injection of 195 mg/kg STZ-induced diabetes significantly increased serum levels of corticosterone and reduced hippocampal adiponectin levels in adult mice. STZ injection also significantly reduced the number of Ki67 and doublecortin (DCX) positive cells and the ratio of co-labeling of DCX and bromodeoxyuridine (BrdU) in the hippocampal dentate region, indicating a decrease in adult hippocampal neurogenesis. Two-week voluntary wheel running significantly restored hippocampal neurogenesis in the diabetic wild-type mice, but not adiponectin knockout mice, indicating that adiponectin is critical for physical exercise to restore hippocampal adult neurogenesis in mice with diabetes. The results suggest that increasing adiponectin levels could be a therapeutic approach to restore hippocampal neurogenesis impairment in individuals with diabetes
Drug discovery from Chinese medicine against neurodegeneration in Alzheimer's and vascular dementia
Alzheimer's disease and vascular dementia are two major diseases associated with dementia, which is common among the elderly. While the etiology of dementia is multi-factorial and complex, neurodegeneration may be the major cause of these two diseases. Effective drugs for treating dementia are still to be discovered. Current western pharmacological approaches against neurodegeneration in dementia develop symptom-relieving and disease-modifying drugs. Current integrative and holistic approaches of Chinese medicine to discovering drugs for neurodegeneration in dementia include (1) single molecules from the herbs, (2) standardized extracts from a single herb, and (3) herbal formula with definite composition. This article not only reviews the concept of dementia in western medicine and Chinese medicine but also evaluates the advantages and disadvantages of these approaches
Lycium ruthenicum water extract preserves retinal ganglion cells in chronic ocular hypertension mouse models
Lycium ruthenicum Murray (LR), known as āblack goji berryā or āblack wolfberryā, is widely utilized in chinese herbal medicine. LR fruit showed its antioxidant and/or anti-inflammation activity in treating cardiac injury, experimental colitis, nonalcoholic fatty liver disease, fatigue, and aging. Glaucoma is the leading cause of irreversible blindness. Besides elevated intraocular pressure (IOP), oxidative stress and neuroinflammation were recognized to contribute to the pathogenesis of glaucoma. This study investigated the treatment effects of LR water extract (LRE) on retinal ganglion cells (RGCs) threatened by sustained IOP elevation in a laser-induced chronic ocular hypertension (COH) mouse model and the DBA/2J mouse strain. The antioxidation and anti-inflammation effects of LRE were further tested in the H2O2-challenged immortalized microglial (IMG) cell line in vitro. LRE oral feeding (2Ā g/kg) preserved the function of RGCs and promoted their survival in both models mimicking glaucoma. LRE decreased 8-hydroxyguanosine (oxidative stress marker) expression in the retina. LRE reduced the number of Iba-1+ microglia in the retina of COH mice, but not in the DBA/2J mice. At the mRNA level, LRE reversed the COH induced HO-1 and SOD-2 overexpressions in the retina of COH mice. Further in vitro study demonstrated that LRE pretreatment to IMG cells could significantly reduce H2O2 induced oxidative stress through upregulation of GPX-4, Prdx-5, HO-1, and SOD-2. Our work demonstrated that daily oral intake of LRE can be used as a preventative/treatment agent to protect RGCs under high IOP stress probably through reducing oxidative stress and inhibiting microglial activation in the retina
Voluntary running delays primary degeneration in rat retinas after partial optic nerve transection
Running is believed to be beneficial for human health. Many studies have focused on the neuroprotective effects of voluntary running on animal models. There were both primary and secondary degeneration in neurodegenerative diseases, including glaucoma. However, whether running can delay primary or secondary degeneration or both of them was not clear. Partial optic nerve transection model is a valuable glaucoma model for studying both primary and secondary degeneration because it can separate primary (mainly in the superior retina) from secondary (mainly in the inferior retina) degeneration. Therefore, we compared the survival of retinal ganglion cells between Sprague-Dawley rat runners and non-runners both in the superior and inferior retinas. Excitotoxicity, oxidative stress, and apoptosis are involved in the degeneration of retinal ganglion cells in glaucoma. So we also used western immunoblotting to compare the expression of some proteins involved in apoptosis (phospho-c-Jun N-terminal kinases, p-JNKs), oxidative stress (manganese superoxide dismutase, MnSOD) and excitotoxicity (glutamine synthetase) between runners and non-runners after partial optic nerve transection. Results showed that voluntary running delayed the death of retinal ganglion cells vulnerable to primary degeneration but not those to secondary degeneration. In addition, voluntary running decreased the expression of glutamine synthetase, but not the expression of p-JNKs and MnSOD in the superior retina after partial optic nerve transection. These results illustrated that primary degeneration of retinal ganglion cells might be mainly related with excitotoxicity rather than oxidative stress; and the voluntary running could down-regulate excitotoxicity to delay the primary degeneration of retinal ganglion cells after partial optic nerve transection
Potential Biomarkers for Physical Exercise-Induced Brain Health
Physical exercise has long been recognized as an effective and economic strategy to promote brain health in humans. The cellular and structural changes in the brains of exercised animals, including enhancements of neurogenesis and synaptogenesis, dendritic remodeling, and synaptic plasticity, have been considered as the key biological alterations accounting for exercise-elicited benefits to brain health. However, what transduces body movements into the above-mentioned changes remains largely unknown. Emerging theories indicate that physical activity triggers the release of various factors into the circulation from skeletal muscle (neurotrophins, myokines, and cytokines) and/or adipose tissue (adipokines). In this chapter, we review several of these molecules that are potentially implicated in this process, including neurotrophic factors (BDNF, IGF-1, and VEGF), adipokines (adiponectin and irisin), and myokines/cytokines (IL-15). The relationship, either causal or concomitant, between levels of these molecules (particularly in the blood) and brain function after exercise may help to identify biomarkers that can serve as objective indicators to evaluate exercise therapy on diseased or ageing brain. In addition, unmasking biomarkers may be instrumental in elucidating the mechanisms mediating exercise-induced brain health, thereby contributing to novel drug discovery for treatments to maintain brain health
- ā¦