6 research outputs found

    Porous Nanocrystalline Silicon Supported Bimetallic Pd-Au Catalysts: Preparation, Characterization, and Direct Hydrogen Peroxide Synthesis.

    Get PDF
    Bimetallic Pd-Au catalysts were prepared on the porous nanocrystalline silicon (PSi) for the first time. The catalysts were tested in the reaction of direct hydrogen peroxide synthesis and characterized by standard structural and chemical techniques. It was shown that the Pd-Au/PSi catalyst prepared from conventional H2[PdCl4] and H[AuCl4] precursors contains monometallic Pd and a range of different Pd-Au alloy nanoparticles over the oxidized PSi surface. The PdAu2/PSi catalyst prepared from the [Pd(NH3)4][AuCl4]2 double complex salt (DCS) single-source precursor predominantly contains bimetallic Pd-Au alloy nanoparticles. For both catalysts the surface of bimetallic nanoparticles is Pd-enriched and contains palladium in Pd0 and Pd2+ states. Among the catalysts studied, the PdAu2/PSi catalyst was the most active and selective in the direct H2O2 synthesis with H2O2 productivity of 0.5 [Formula: see text] at selectivity of 50% and H2O2 concentration of 0.023 M in 0.03 M H2SO4-methanol solution after 5 h on stream at -10°C and atmospheric pressure. This performance is due to high activity in the H2O2 synthesis reaction and low activities in the undesirable H2O2 decomposition and hydrogenation reactions. Good performance of the PdAu2/PSi catalyst was associated with the major part of Pd in the catalyst being in the form of the bimetallic Pd-Au nanoparticles. Porous silicon was concluded to be a promising catalytic support for direct hydrogen peroxide synthesis due to its inertness with respect to undesirable side reactions, high thermal stability, and conductivity, possibility of safe operation at high temperatures and pressures and a well-established manufacturing process

    Porous Nanocrystalline Silicon Supported Bimetallic Pd-Au Catalysts: Preparation, Characterization, and Direct Hydrogen Peroxide Synthesis

    No full text
    Bimetallic Pd-Au catalysts were prepared on the porous nanocrystalline silicon (PSi) for the first time. The catalysts were tested in the reaction of direct hydrogen peroxide synthesis and characterized by standard structural and chemical techniques. It was shown that the Pd-Au/PSi catalyst prepared from conventional H2[PdCl4] and H[AuCl4] precursors contains monometallic Pd and a range of different Pd-Au alloy nanoparticles over the oxidized PSi surface. The PdAu2/PSi catalyst prepared from the [Pd(NH3)4][AuCl4]2 double complex salt (DCS) single-source precursor predominantly contains bimetallic Pd-Au alloy nanoparticles. For both catalysts the surface of bimetallic nanoparticles is Pd-enriched and contains palladium in Pd0 and Pd2+ states. Among the catalysts studied, the PdAu2/PSi catalyst was the most active and selective in the direct H2O2 synthesis with H2O2 productivity of 0.5 mol gPd-1 h-1 at selectivity of 50% and H2O2 concentration of 0.023 M in 0.03 M H2SO4-methanol solution after 5 h on stream at −10°C and atmospheric pressure. This performance is due to high activity in the H2O2 synthesis reaction and low activities in the undesirable H2O2 decomposition and hydrogenation reactions. Good performance of the PdAu2/PSi catalyst was associated with the major part of Pd in the catalyst being in the form of the bimetallic Pd-Au nanoparticles. Porous silicon was concluded to be a promising catalytic support for direct hydrogen peroxide synthesis due to its inertness with respect to undesirable side reactions, high thermal stability, and conductivity, possibility of safe operation at high temperatures and pressures and a well-established manufacturing process

    Coupling Pre-Reforming and Partial Oxidation for LPG Conversion to Syngas

    No full text
    Coupling of the pre-reforming and partial oxidation was considered for the conversion of liquefied petroleum gas to syngas for the feeding applications of solid oxide fuel cells. Compared with conventional two step steam reforming, it allows the amount of water required for the process, and therefore the energy needed for water evaporation, to be lowered; substitution of high-potential heat by lower ones; and substitution of expensive tubular steam reforming reactors by adiabatic ones. The supposed process is more productive due to the high reaction rate of partial oxidation. The obtained syngas contains only ca. 10 vol.% H2O and ca. 50 vol.% of H2 + CO, which is attractive for the feeding application of solid oxide fuel cells. Compared with direct partial oxidation of liquefied petroleum gas, the suggested scheme is more energy efficient and overcomes problems with coke formation and catalyst overheating. The proof-of-concept experiments were carried out. The granular Ni-Cr2O3-Al2O3 catalyst was shown to be effective for propane pre-reforming at 350–400 °C, H2O:C molar ratio of 1.0, and flow rate of 12,000 h−1. The composite Rh/Ce0.75Zr0.25O2-δ–Æž-Al2O3/FeCrAl catalyst was shown to be active and stable under conditions of partial oxidation of methane-rich syngas after pre-reforming and provided a syngas (H2 + CO) productivity of 28 m3·Lcat−1·h−1 (standard temperature and pressure)

    Ceria–Zirconia-Supported Ruthenium Catalysts for Hydrogen Production by Ammonia Decomposition

    No full text
    Commercial cerium–zirconium oxide supports (Ce0.5Zr0.5O2, Ce0.75Zr0.25O2, and Ce0.4Zr0.5Y0.05La0.05O2) were used to prepare Ru/CeZrOx catalysts. According to the XRD and IR spectroscopy data, the supports consist of ceria-based substitutional solid solutions. The specific surface areas of supports and catalysts are similar and range from 71–89 m2/g. As shown by TEM and XRD methods, the size of support particles equals 6–11 nm. According to the TEM data, the size of ruthenium particles does not exceed 1.3 nm. The catalyst activity in the ammonia decomposition process was studied. The Ru/Ce0.75Zr0.25O2 catalyst at temperature 500 °C and GHSV 120,000 h−1 demonstrated the highest hydrogen productivity of 53.3 mmol H2/(gcat·min) and compares well with the best results reported in the literature. The kinetics of ammonia decomposition reaction were calculated using the Temkin–Pyzhov exponential expression. The developed mathematical model well described the experimental data. The studied catalysts demonstrated high activity for the ammonia decomposition reaction

    Effect of Ce/Zr Composition on Structure and Properties of Ce1−xZrxO2 Oxides and Related Ni/Ce1−xZrxO2 Catalysts for CO2 Methanation

    No full text
    Ce1−xZrxO2 oxides (x = 0.1, 0.25, 0.5) prepared via the Pechini route were investigated using XRD analysis, N2 physisorption, TEM, and TPR in combination with density functional theory calculations. The Ni/Ce1−xZrxO2 catalysts were characterized via XRD analysis, SEM-EDX, TEM-EDX, and CO chemisorption and tested in carbon dioxide methanation. The obtained Ce1−xZrxO2 materials were single-phase solid solutions. The increase in Zr content intensified crystal structure strains and favored the reducibility of the Ce1−xZrxO2 oxides but strongly affected their microstructure. The catalytic activity of the Ni/Ce1−xZrxO2 catalysts was found to depend on the composition of the Ce1−xZrxO2 supports. The detected negative effect of Zr content on the catalytic activity was attributed to the decrease in the dispersion of the Ni0 nanoparticles and the length of metal–support contacts due to the worsening microstructure of Ce1−xZrxO2 oxides. The improvement of the redox properties of the Ce1−xZrxO2 oxide supports through cation modification can be negated by changes in their microstructure and textural characteristics
    corecore