183 research outputs found

    The ladder-shaped polyether toxin gambierol anchors the gating machinery of Kv3.1 channels in the resting state

    Get PDF
    Voltage-gated potassium (Kv) and sodium (Nav) channels are key determinants of cellular excitability and serve as targets of neurotoxins. Most marine ciguatoxins potentiate Nav channels and cause ciguatera seafood poisoning. Several ciguatoxins have also been shown to affect Kv channels, and we showed previously that the ladder-shaped polyether toxin gambierol is a potent Kv channel inhibitor. Most likely, gambierol acts via a lipid-exposed binding site, located outside the K+ permeation pathway. However, the mechanism by which gambierol inhibits Kv channels remained unknown. Using gating and ionic current analysis to investigate how gambierol affected S6 gate opening and voltage-sensing domain (VSD) movements, we show that the resting (closed) channel conformation forms the high-affinity state for gambierol. The voltage dependence of activation was shifted by >120 mV in the depolarizing direction, precluding channel opening in the physiological voltage range. The (early) transitions between the resting and the open state were monitored with gating currents, and provided evidence that strong depolarizations allowed VSD movement up to the activated-not-open state. However, for transition to the fully open (ion-conducting) state, the toxin first needed to dissociate. These dissociation kinetics were markedly accelerated in the activated-not-open state, presumably because this state displayed a much lower affinity for gambierol. A tetrameric concatemer with only one high-affinity binding site still displayed high toxin sensitivity, suggesting that interaction with a single binding site prevented the concerted step required for channel opening. We propose a mechanism whereby gambierol anchors the channel's gating machinery in the resting state, requiring more work from the VSD to open the channel. This mechanism is quite different from the action of classical gating modifier peptides (e. g., hanatoxin). Therefore, polyether toxins open new opportunities in structure-function relationship studies in Kv channels and in drug design to modulate channel function

    Experimental and ab-initio study of the mechanical properties of hydroxyapatite

    Get PDF
    peer reviewedThe authors have studied the elastic properties of radio frequency sputtered phase pure, stoichiometric, and dense hydroxyapatite films by nanoindentation. The measured elastic modulus values have been compared to ab initio calculated data. The calculation technique was based on the determination of all elastic constants. The calculated and measured elastic modulus values differ by ~ 10%. The good agreement indicates that the elasticity of hydroxyapatite can be described using ab initio calculations, establishing the elastic modulus thereof

    Challenges in optics for Extremely Large Telescope instrumentation

    Full text link
    We describe and summarize the optical challenges for future instrumentation for Extremely Large Telescopes (ELTs). Knowing the complex instrumental requirements is crucial for the successful design of 30-60m aperture telescopes. After all, the success of ELTs will heavily rely on its instrumentation and this, in turn, will depend on the ability to produce large and ultra-precise optical components like light-weight mirrors, aspheric lenses, segmented filters, and large gratings. New materials and manufacturing processes are currently under study, both at research institutes and in industry. In the present paper, we report on its progress with particular emphasize on volume-phase-holographic gratings, photochromic materials, sintered silicon-carbide mirrors, ion-beam figuring, ultra-precision surfaces, and free-form optics. All are promising technologies opening new degrees of freedom to optical designers. New optronic-mechanical systems will enable efficient use of the very large focal planes. We also provide exploratory descriptions of "old" and "new" optical technologies together with suggestions to instrument designers to overcome some of the challenges placed by ELT instrumentation.Comment: (Proc. OPTICON Key Technology Network Workshop, Rome 20-21 October 2005

    Identification of IKr Kinetics and Drug Binding in Native Myocytes

    Get PDF
    Determining the effect of a compound on IKr is a standard screen for drug safety. Often the effect is described using a single IC50 value, which is unable to capture complex effects of a drug. Using verapamil as an example, we present a method for using recordings from native myocytes at several drug doses along with qualitative features of IKr from published studies of HERG current to estimate parameters in a mathematical model of the drug effect on IKr. IKr was recorded from canine left ventricular myocytes using ruptured patch techniques. A voltage command protocol was used to record tail currents at voltages from −70 to −20 mV, following activating pulses over a wide range of voltages and pulse durations. Model equations were taken from a published IKr Markov model and the drug was modeled as binding to the open state. Parameters were estimated using a combined global and local optimization algorithm based on collected data with two additional constraints on IKrI–V relation and IKr inactivation. The method produced models that quantitatively reproduce both the control IKr kinetics and dose dependent changes in the current. In addition, the model exhibited use and rate dependence. The results suggest that: (1) the technique proposed here has the practical potential to develop data-driven models that quantitatively reproduce channel behavior in native myocytes; (2) the method can capture important drug effects that cannot be reproduced by the IC50 method. Although the method was developed for IKr, the same strategy can be applied to other ion channels, once appropriate channel-specific voltage protocols and qualitative features are identified

    Global Spatial Risk Assessment of Sharks Under the Footprint of Fisheries

    Get PDF
    Effective ocean management and conservation of highly migratory species depends on resolving overlap between animal movements and distributions and fishing effort. Yet, this information is lacking at a global scale. Here we show, using a big-data approach combining satellite-tracked movements of pelagic sharks and global fishing fleets, that 24% of the mean monthly space used by sharks falls under the footprint of pelagic longline fisheries. Space use hotspots of commercially valuable sharks and of internationally protected species had the highest overlap with longlines (up to 76% and 64%, respectively) and were also associated with significant increases in fishing effort. We conclude that pelagic sharks have limited spatial refuge from current levels of high-seas fishing effort. Results demonstrate an urgent need for conservation and management measures at high-seas shark hotspots and highlight the potential of simultaneous satellite surveillance of megafauna and fishers as a tool for near-real time, dynamic management

    As possibilidades investigativas da aprendizagem histórica de jovens estudantes a partir das histórias em quadrinhos

    Get PDF
    Resumo O objetivo deste estudo é investigar como a verdade histórica e a intersubjetividade organizam a forma como os jovens tomam o conhecimento para si. A investigação é estruturada nas relações entre a cultura jovem, as histórias em quadrinhos e a cultura histórica de uma sociedade (RÜSEN, 2009). Analisam-se possibilidades investigativas existentes na relação entre as histórias em quadrinhos e a aprendizagem histórica de jovens estudantes. Abordam-se os tipos de investigações sobre como as narrativas históricas gráficas entraram na cultura escolar: 1) os quadrinhos ligados ao mercado das histórias em quadrinhos ficcionais com temas históricos; 2) os livros didáticos; 3) as histórias em quadrinhos didáticas na forma de paradidáticos; 4) as histórias em quadrinhos produzidas pelos próprios estudantes; e 5) as narrativas gráficas autobiográficas

    The ladder-shaped polyether toxin gambierol anchors the gating machinery of Kv3.1 channels in the resting state

    Get PDF
    Voltage-gated potassium (Kv) and sodium (Nav) channels are key determinants of cellular excitability and serve as targets of neurotoxins. Most marine ciguatoxins potentiate Nav channels and cause ciguatera seafood poisoning. Several ciguatoxins have also been shown to affect Kv channels, and we showed previously that the ladder-shaped polyether toxin gambierol is a potent Kv channel inhibitor. Most likely, gambierol acts via a lipid-exposed binding site, located outside the K(+) permeation pathway. However, the mechanism by which gambierol inhibits Kv channels remained unknown. Using gating and ionic current analysis to investigate how gambierol affected S6 gate opening and voltage-sensing domain (VSD) movements, we show that the resting (closed) channel conformation forms the high-affinity state for gambierol. The voltage dependence of activation was shifted by >120 mV in the depolarizing direction, precluding channel opening in the physiological voltage range. The (early) transitions between the resting and the open state were monitored with gating currents, and provided evidence that strong depolarizations allowed VSD movement up to the activated-not-open state. However, for transition to the fully open (ion-conducting) state, the toxin first needed to dissociate. These dissociation kinetics were markedly accelerated in the activated-not-open state, presumably because this state displayed a much lower affinity for gambierol. A tetrameric concatemer with only one high-affinity binding site still displayed high toxin sensitivity, suggesting that interaction with a single binding site prevented the concerted step required for channel opening. We propose a mechanism whereby gambierol anchors the channel’s gating machinery in the resting state, requiring more work from the VSD to open the channel. This mechanism is quite different from the action of classical gating modifier peptides (e.g., hanatoxin). Therefore, polyether toxins open new opportunities in structure–function relationship studies in Kv channels and in drug design to modulate channel function
    corecore