15,354 research outputs found

    Eye position modulates retinotopic responses in early visual areas: a bias for the straight-ahead direction

    Get PDF
    Even though the eyes constantly change position, the location of a stimulus can be accurately represented by a population of neurons with retinotopic receptive fields modulated by eye position gain fields. Recent electrophysiological studies, however, indicate that eye position gain fields may serve an additional function since they have a non-uniform spatial distribution that increases the neural response to stimuli in the straight-ahead direction. We used functional magnetic resonance imaging and a wide-field stimulus display to determine whether gaze modulations in early human visual cortex enhance the blood-oxygenation-level dependent (BOLD) response to stimuli that are straight-ahead. Subjects viewed rotating polar angle wedge stimuli centered straight-ahead or vertically displaced by ±20° eccentricity. Gaze position did not affect the topography of polar phase-angle maps, confirming that coding was retinotopic, but did affect the amplitude of the BOLD response, consistent with a gain field. In agreement with recent electrophysiological studies, BOLD responses in V1 and V2 to a wedge stimulus at a fixed retinal locus decreased when the wedge location in head-centered coordinates was farther from the straight-ahead direction. We conclude that stimulus-evoked BOLD signals are modulated by a systematic, non-uniform distribution of eye-position gain fields

    Geometrical Optics of Beams with Vortices: Berry Phase and Orbital Angular Momentum Hall Effect

    Full text link
    We consider propagation of a paraxial beam carrying the spin angular momentum (polarization) and intrinsic orbital angular momentum (IOAM) in a smoothly inhomogeneous isotropic medium. It is shown that the presence of IOAM can dramatically enhance and rearrange the topological phenomena that previously were considered solely in connection to the polarization of transverse waves. In particular, the appearance of a new-type Berry phase that describes the parallel transport of the beam structure along a curved ray is predicted. We derive the ray equations demonstrating the splitting of beams with different values of IOAM. This is the orbital angular momentum Hall effect, which resembles Magnus effect for optical vortices. Unlike the recently discovered spin Hall effect of photons, it can be much larger in magnitude and is inherent to waves of any nature. Experimental means to detect the phenomena is discussed.Comment: 5 pages, 2 figure

    Compton scattering in Noncommutative Space-Time at the NLC

    Full text link
    We study the Compton scattering in the noncommutative counter part of QED (NC QED). Interactions in NC QED have momentum dependent phase factors and the gauge fields have Yang Mills type couplings, this modifies the cross sections and are different from the commuting Standard Model. Collider signals of noncommutative space-time are studied at the Next Linear Collider (NLC) operating in the eγe \gamma mode. Results for different polarised cases are presented and it is shown that the Compton process can probe the noncommutative scale in the range of 1 - 2.5 TeV for typical proposed NLC energies.Comment: 12 pages, 5 Postscript figures, version to appear in Phys. Rev.

    A method for determining CP violating phase γ\gamma

    Full text link
    A new way of determining the phases of weak amplitudes in charged BB decays based on SU(3) symmetry is proposed. The CP violating phase γ\gamma can now be determined without the previous difficulty associated with electroweak penguins.Comment: 9 pages plus one figure, Revte

    Extracting Weak Phase Information from B -> V_1 V_2 Decays

    Get PDF
    We describe a new method for extracting weak, CP-violating phase information, with no hadronic uncertainties, from an angular analysis of B -> V_1 V_2 decays, where V_1 and V_2 are vector mesons. The quantity sin2(2β+γ)\sin^2 (2\beta + \gamma) can be cleanly obtained from the study of decays such as B_d^0(t) -> D^{*\pm} \rho^\mp, D^{*\pm} a_1^{\mp}, D^{*0} K^{*0}, etc. Similarly, one can use B_s^0(t) -> D_s^{*\pm} K^{*\mp} to extract sin2γ\sin^2 \gamma. There are no penguin contributions to these decays. It is possible that sin2(2β+γ)\sin^2 (2\beta + \gamma) will be the second function of CP phases, after sin2β\sin 2\beta, to be measured at B-factories.Comment: 4 pages, RevTeX, no figure

    Where are the Hedgehogs in Nematics?

    Full text link
    In experiments which take a liquid crystal rapidly from the isotropic to the nematic phase, a dense tangle of defects is formed. In nematics, there are in principle both line and point defects (``hedgehogs''), but no point defects are observed until the defect network has coarsened appreciably. In this letter the expected density of point defects is shown to be extremely low, approximately 10810^{-8} per initially correlated domain, as result of the topology (specifically, the homology) of the order parameter space.Comment: 6 pages, latex, 1 figure (self-unpacking PostScript)

    Rotational cooling of heteronuclear molecular ions with ^1-Sigma, ^2-Sigma, ^3-Sigma and ^2-Pi electronic ground states

    Full text link
    The translational motion of molecular ions can be effectively cooled sympathetically to translational temperatures below 100 mK in ion traps through Coulomb interactions with laser-cooled atomic ions. The ro-vibrational degrees of freedom, however, are expected to be largely unaffected during translational cooling. We have previously proposed schemes for cooling of the internal degrees of freedom of such translationally cold but internally hot heteronuclear diatomic ions in the simplest case of ^1-Sigma electronic ground state molecules. Here we present a significant simplification of these schemes and make a generalization to the most frequently encountered electronic ground states of heteronuclear molecular ions: ^1-Sigma, ^2-Sigma, ^3-Sigma and ^2-Pi. The schemes are relying on one or two laser driven transitions with the possible inclusion of a tailored incoherent far infrared radiation field.Comment: 16 pages, 13 figure

    Giant Enhancement of Surface Second Harmonic Generation in BaTiO_3 due to Photorefractive Surface Wave Excitation

    Full text link
    We report observation of strongly enhanced surface SHG in BaTiO_3 due to excitation of a photorefractive surface electromagnetic wave. Surface SH intensity may reach 10^{-2} of the incident fundamental light intensity. Angular, crystal orientation and polarization dependencies of this SHG are presented. Possible applications of this effect in nonlinear surface spectroscopy are discussed.Comment: 5 pages, 6 figures, submitted to Physical Review Letters on the 3/29/199

    B-Decay CP Asymmetries, Discrete Ambiguities and New Physics

    Get PDF
    The first measurements of CP violation in the BB system will likely probe sin2α\sin 2\alpha, sin2β\sin 2\beta and cos2γ\cos 2\gamma. Assuming that the CP angles α\alpha, β\beta and γ\gamma are the interior angles of the unitarity triangle, these measurements determine the angle set (α,β,γ)(\alpha,\beta,\gamma) except for a twofold discrete ambiguity. If one allows for the possibility of new physics, the presence of this discrete ambiguity can make its discovery difficult: if only one of the two candidate solutions is consistent with constraints from other measurements in the BB and KK systems, one is not sure whether new physics is present or not. We review the methods used to resolve the discrete ambiguity and show that, even in the presence of new physics, they can usually be used to uncover this new physics. There are some exceptions, which we describe in detail. We systematically scan the parameter space and present examples of values of (α,β,γ)(\alpha,\beta,\gamma) and the new-physics parameters which correspond to all possibilities. Finally, we show that if one relaxes the assumption that the bag parameters \BBd and \BK are positive, one can no longer definitively establish the presence of new physics.Comment: 29 pages, LaTeX, 1 figures, presentation substantially reworked, physics conclusions unchanged. This version will be published in Phys. Rev.

    Genetic Polymorphism in Evolving Population

    Full text link
    We present a model for evolving population which maintains genetic polymorphism. By introducing random mutation in the model population at a constant rate, we observe that the population does not become extinct but survives, keeping diversity in the gene pool under abrupt environmental changes. The model provides reasonable estimates for the proportions of polymorphic and heterozygous loci and for the mutation rate, as observed in nature
    corecore