77 research outputs found
Xenobiotic Metabolism in Mice Lacking the UDP-Glucuronosyltransferase 2 Family
UDP-Glucuronosyltransferases (UGTs) conjugate a glucuronyl group from glucuronic acid to a wide range of lipophilic substrates to form a hydrophilic glucuronide conjugate. The glucuronide generally has decreased bioactivity and increased water solubility to facilitate excretion. Glucuronidation represents an important detoxification pathway for both endogenous waste products and xenobiotics, including drugs and harmful industrial chemicals. Two clinically significant families of UGT enzymes are present in mammals: UGT1s and UGT2s. Although the two families are distinct in gene structure, studies using recombinant enzymes have shown considerable overlap in their ability to glucuronidate many substrates, often obscuring the relative importance of the two families in the clearance of particular substrates in vivo. To address this limitation, we have generated a mouse line, termed ĪUgt2, in which the entire Ugt2 gene family, extending over 609 kilobase pairs, is excised. This mouse line provides a means to determine the contributions of the two UGT families in vivo. We demonstrate the utility of these animals by defining for the first time the in vivo contributions of the UGT1 and UGT2 families to glucuronidation of the environmental estrogenic agent bisphenol A (BPA). The highest activity toward this chemical is reported for human and rodent UGT2 enzymes. Surprisingly, our studies using the ĪUgt2 mice demonstrate that, while both UGT1 and UGT2 isoforms can conjugate BPA, clearance is largely dependent on UGT1s
Mice Lacking Three Loci Encoding 14 Glutathione Transferase Genes: A Novel Tool for Assigning Function to the GSTP, GSTM, and GSTT Families
Glutathione S-transferases (GSTs) form a superfamily defined by their ability to catalyze the conjugation of glutathione with electrophilic substrates. These enzymes are proposed to play a critical role in protection of cellular components from damage mediated by reactive metabolites. Twenty-two cytosolic GSTs, grouped into seven families, are recognized in mice. This complexity hinders the assignment of function to a subset or family of these genes. We report generation of a mouse line in which the locus encoding three GST gene families is deleted. This includes the four Gstt genes spanning 65 kb on chromosome 10 and the seven Gstm genes found on a 150 kb segment of DNA chromosome 3. In addition, we delete two Gstp genes on chromosome 19 as well as a third related gene located 15 kb telomeric to Gstp1 and Gstp2, which we identify as a potential new member of this gene family. We show that, despite the loss of up to 75% of total GST activity in some tissues from these animals, the mice are healthy and fertile, with normal life expectancy. The normal development and health of these animals make them an appropriate model for defining the role of these families in redox homeostasis and metabolism of drugs and environmental pollutants
Common Gene Therapy Viral Vectors Do Not Efficiently Penetrate Sputum from Cystic Fibrosis Patients
Norwalk virus and human papilloma virus, two viruses that infect humans at mucosal surfaces, have been found capable of rapidly penetrating human mucus secretions. Viral vectors for gene therapy of Cystic Fibrosis (CF) must similarly penetrate purulent lung airway mucus (sputum) to deliver DNA to airway epithelial cells. However, surprisingly little is known about the rates at which gene delivery vehicles penetrate sputum, including viral vectors used in clinical trials for CF gene therapy. We find that sputum spontaneously expectorated by CF patients efficiently traps two viral vectors commonly used in CF gene therapy trials, adenovirus (dā¼80 nm) and adeno-associated virus (AAV serotype 5; dā¼20 nm), leading to average effective diffusivities that are ā¼3,000-fold and 12,000-fold slower than their theoretical speeds in water, respectively. Both viral vectors are slowed by adhesion, as engineered muco-inert nanoparticles with diameters as large as 200 nm penetrate the same sputum samples at rates only ā¼40-fold reduced compared to in pure water. A limited fraction of AAV exhibit sufficiently fast mobility to penetrate physiologically thick sputum layers, likely because of the lower viscous drag and smaller surface area for adhesion to sputum constituents. Nevertheless, poor penetration of CF sputum is likely a major contributor to the ineffectiveness of viral vector based gene therapy in the lungs of CF patients observed to date
Role of BRCA gene dysfunction in breast and ovarian cancer predisposition
Tumor suppressor genes that perform apparently generic cellular functions nonetheless cause tissue-specific syndromes in the human population when they are mutated in the germline. The two major hereditary breast/ovarian cancer predisposition genes, BRCA1 and BRCA2, appear to participate in a common pathway that is involved in the control of homologous recombination and in the maintenance of genomic integrity. How might such functions translate into the specific suppression of cancers of the breast and ovarian epithelia? Recent advances in the study of BRCA1 and BRCA2, discussed herein, have provided new opportunities to address this question
Comparative genetic analysis: the utility of mouse genetic systems for studying human monogenic disease
One of the long-term goals of mutagenesis programs in the mouse has been to generate mutant lines to facilitate the functional study of every mammalian gene. With a combination of complementary genetic approaches and advances in technology, this aim is slowly becoming a reality. One of the most important features of this strategy is the ability to identify and compare a number of mutations in the same gene, an allelic series. With the advent of gene-driven screening of mutant archives, the search for a specific series of interest is now a practical option. This review focuses on the analysis of multiple mutations from chemical mutagenesis projects in a wide variety of genes and the valuable functional information that has been obtained from these studies. Although gene knockouts and transgenics will continue to be an important resource to ascertain gene function, with a significant proportion of human diseases caused by point mutations, identifying an allelic series is becoming an equally efficient route to generating clinically relevant and functionally important mouse models
Regulation of pH During Amelogenesis
During amelogenesis, extracellular matrix proteins interact with growing hydroxyapatite crystals to create one of the most architecturally complex biological tissues. The process of enamel formation is a unique biomineralizing system characterized first by an increase in crystallite length during the secretory phase of amelogenesis, followed by a vast increase in crystallite width and thickness in the later maturation phase when organic complexes are enzymatically removed. Crystal growth is modulated by changes in the pH of the enamel microenvironment that is critical for proper enamel biomineralization. Whereas the genetic bases for most abnormal enamel phenotypes (amelogenesis imperfecta) are generally associated with mutations to enamel matrix specific genes, mutations to genes involved in pH regulation may result in severely affected enamel structure, highlighting the importance of pH regulation for normal enamel development. This review summarizes the intra- and extracellular mechanisms employed by the enamel-forming cells, ameloblasts, to maintain pH homeostasis and, also, discusses the enamel phenotypes associated with disruptions to genes involved in pH regulation
Altered inflammatory responses in leukotriene-deficient mice.
Leukotrienes have been implicated in the regulation of immune responses, including inflammation and immediate hypersensitivity reactions. Here, we describe the phenotypic analysis of leukotriene-deficient mice generated by inactivation of the 5-lipoxygenase (5LO) gene. These 5LO(-/-) mice were unable to synthesize detectable levels of leukotrienes and were more resistant to lethal anaphylaxis induced by platelet-activating factor. The intensity of an acute inflammatory response induced by arachidonic acid was similar in 5LO(-/-) mice and controls. However, the response in 5LO(-/-) mice, but not in controls, could be virtually eliminated by a cyclooxygenase inhibitor. These data suggest that inflammatory responses are modulated by arachidonic acid metabolites through a variety of interconnected mechanisms. This has important implications for understanding the early events of an inflammatory response and for designing drugs for use in therapeutic intervention
High-level expression of a bioengineered, cysteine-free hepatocyte-stimulating factor (interleukin 6)-like protein.
Hepatocyte-stimulating factor, interferon-beta 2, B-cell stimulation factor 2, and hybridoma/plasmacytoma growth factor are identical proteins presently referred to as interleukin 6 (IL-6). Through the use of synthetic oligonucleotide technology, we have constructed a biologically active recombinant IL-6 (rIL-6) gene based on the sequence of a human IL-6 cDNA. The synthetic gene encodes a cysteine-free, bioengineered rIL-6 protein that is expressed at high levels in Escherichia coli as a tripartite fusion protein. Cleavage of the fusion protein with collagenase releases a 23-kDa rIL-6 protein that can be easily purified to homogeneity. We show that the rIL-6 protein displays a range of biological activities similar to those of natural human IL-6, as demonstrated by its ability to (i) protect cells from viral infection, (ii) stimulate the synthesis of fibrinogen in rat FAZA 967 cells, and (iii) induce the terminal differentiation of B cells, resulting in elevated secretion of immunoglobulin
Anaphylaxis mediated through a humanized high affinity IgE receptor.
Mast cells and basophils, which are activated by IgE and allergens through the high affinity IgE receptor (Fc epsilon RI), play a prominent role in anaphylaxis in the mouse. Mice deficient in this receptor become resistant to passive anaphylaxis. As a first step in developing an in vivo model that more closely mimics the IgE-mediated responses in man, we used a combination of transgenic and embryonic stem cell technology to generate a mouse line in which the murine Fc epsilon RI alpha-chain has been replaced with its human homologue. We demonstrate here that these mice express a tetrameric high affinity IgE receptor, in which the human alpha-chain associates with the murine beta- and gamma-chains, and that upon triggering with relevant Ag, this receptor mediates the initiation of the expected intracellular events. In addition, we show that the human alpha-chain restores an anaphylactic response to the nonresponsive alpha-deficient parental mouse line. This "humanized" mouse represents a potentially important model system, not only for studying the role of IgE in human immune responses, but also for testing potential therapeutic reagents that can interfere with responses mediated through the human Fc epsilon RI receptor.Journal ArticleResearch Support, Non-U.S. Gov'tResearch Support, U.S. Gov't, P.H.S.info:eu-repo/semantics/publishe
- ā¦