2,193 research outputs found
A Comprehensive Survey of Brane Tilings
An infinite class of gauge theories can be engineered on
the worldvolume of D3-branes probing toric Calabi-Yau 3-folds. This kind of
setup has multiple applications, ranging from the gauge/gravity correspondence
to local model building in string phenomenology. Brane tilings fully encode the
gauge theories on the D3-branes and have substantially simplified their
connection to the probed geometries. The purpose of this paper is to push the
boundaries of computation and to produce as comprehensive a database of brane
tilings as possible. We develop efficient implementations of brane tiling tools
particularly suited for this search. We present the first complete
classification of toric Calabi-Yau 3-folds with toric diagrams up to area 8 and
the corresponding brane tilings. This classification is of interest to both
physicists and mathematicians alike.Comment: 39 pages. Link to Mathematica modules provide
Rotation of Cometary Nuclei New Lightcurves and an Update of the Ensemble Properties of Jupiter-Family Comets
We report new lightcurves and phase functions for nine Jupiter-family comets
(JFCs). They were observed in the period 2004-2015 with various ground
telescopes as part of the Survey of Ensemble Physical Properties of Cometary
Nuclei (SEPPCoN) as well as during devoted observing campaigns. We add to this
a review of the properties of 35 JFCs with previously published rotation
properties.
The photometric time-series were obtained in Bessel R, Harris R and SDSS r'
filters and were absolutely calibrated using stars from the Pan-STARRS survey.
This specially-developed method allowed us to combine data sets taken at
different epochs and instruments with absolute-calibration uncertainty down to
0.02 mag. We used the resulting time series to improve the rotation periods for
comets 14P/Wolf, 47P/Ashbrook-Jackson, 94P/Russell, and 110P/Hartley 3 and to
determine the rotation rates of comets 93P/Lovas and 162P/Siding-Spring for the
first time. In addition to this, we determined the phase functions for seven of
the examined comets and derived geometric albedos for eight of them.
We confirm the known cut-off in bulk densities at 0.6 g
if JFCs are strengthless. Using the model of Davidsson
(2001) for prolate ellipsoids with typical density and elongations, we conclude
that none of the known JFCs require tensile strength larger than 10-25 Pa to
remain stable against rotational instabilities. We find evidence for an
increasing linear phase function coefficient with increasing geometric albedo.
The median linear phase function coefficient for JFCs is 0.046 mag/deg and the
median geometric albedo is 4.2 per cent.Comment: 38 pages, accepted for publication in MNRA
Subsurface Flows in and Around Active Regions with Rotating and Non-rotating Sunspots
The temporal variation of the horizontal velocity in subsurface layers
beneath three different types of active regions is studied using the technique
of ring diagrams. In this study, we select active regions (ARs) 10923, 10930,
10935 from three consecutive Carrington rotations: AR 10930 contains a
fast-rotating sunspot in a strong emerging active region while other two have
non-rotating sunspots with emerging flux in AR 10923 and decaying flux in AR
10935. The depth range covered is from the surface to about 12 Mm. In order to
minimize the influence of systematic effects, the selection of active and quiet
regions is made so that these were observed at the same heliographic locations
on the solar disk. We find a significant variation in both components of the
horizontal velocity in active regions as compared to quiet regions. The
magnitude is higher in emerging-flux regions than in the decaying-flux region,
in agreement with earlier findings. Further, we clearly see a significant
temporal variation in depth profiles of both zonal and meridional flow
components in AR 10930, with the variation in the zonal component being more
pronounced. We also notice a significant influence of the plasma motion in
areas closest to the rotating sunspot in AR 10930 while areas surrounding the
non-rotating sunspots in all three cases are least affected by the presence of
the active region in their neighborhood.Comment: Solar Physics (in press), includes 11 figure
Evolving information systems: meeting the ever-changing environment
To meet the demands of organizations and their ever-changing environment, information systems are required which are able to evolve to the same extent as organizations do. Such a system has to support changes in all time-and application-dependent aspects. In this paper, requirements and a conceptual framework for evolving information systems are presented. This framework includes an architecture for such systems and a revision of the traditional notion of update. Based on this evolutionary notion of update (recording, correction and forgetting) a state transition-oriented model on three levels of abstraction (event level, recording level, correction level) is introduced. Examples are provided to illustrate the conceptual framework for evolving information systems
Organizing research data
Research relies on ever larger amounts of data from experiments, automated production equipment, questionnaries, times series such as weather records, and so on. A major task in science is to combine, process and analyse such data to obtain evidence of patterns and correlations
The nucleus of Comet 67P/Churyumov-Gerasimenko: a new shape model and thermophysical analysis
Context. Comet 67P/Churyumov-Gerasimenko is the target of the European Space Agency Rosetta spacecraft rendez-vous mission. Detailed physical characteristation of the comet before arrival is important for mission planning as well as providing a test bed for ground-based observing and data-analysis methods.
Aims. To conduct a long-term observational programme to characterize the physical properties of the nucleus of the comet, via ground-based optical photometry, and to combine our new data with all available nucleus data from the literature.
Methods. We applied aperture photometry techniques on our imaging data and combined the extracted rotational lightcurves with data from the literature. Optical lightcurve inversion techniques were applied to constrain the spin state of the nucleus and its broad shape. We performed a detailed surface thermal analysis with the shape model and optical photometry by incorporating both into the new Advanced Thermophysical Model (ATPM), along with all available Spitzer 8–24 μm thermal-IR flux measurements from the literature.
Results. A convex triangular-facet shape model was determined with axial ratios b/a = 1.239 and c/a = 0.819. These values can vary by as much as 7% in each axis and still result in a statistically significant fit to the observational data. Our best spin state solution has Psid = 12.76137 ± 0.00006 h, and a rotational pole orientated at Ecliptic coordinates λ = 78◦(±10◦), β = +58◦(±10◦). The nucleus phase darkening behaviour was measured and best characterized using the IAU HG system. Best fit parameters are: G = 0.11 ± 0.12 and HR(1,1,0) = 15.31 ± 0.07. Our shape model combined with the ATPM can satisfactorily reconcile all optical and thermal-IR data, with the fit to the Spitzer 24 μm data taken in February 2004 being exceptionally good. We derive a range of mutually-consistent physical parameters for each thermal-IR data set, including effective radius, geometric albedo, surface thermal inertia and roughness fraction.
Conclusions. The overall nucleus dimensions are well constrained and strongly imply a broad nucleus shape more akin to comet
9P/Tempel 1, rather than the highly elongated or “bi-lobed” nuclei seen for comets 103P/Hartley 2 or 8P/Tuttle. The derived low thermal inertia of −2 K−1 s−1/2 is comparable with that measured for other comets scaled to similar heliocentric distances, and implies a surface regolith finer than lunar surface material
RoboTAP: Target priorities for robotic microlensing observations
Context. The ability to automatically select scientifically-important transient events from an alert stream of many such events, and to conduct follow-up observations in response, will become increasingly important in astronomy. With wide-angle time domain surveys pushing to fainter limiting magnitudes, the capability to follow-up on transient alerts far exceeds our follow-up telescope resources, and effective target prioritization becomes essential. The RoboNet-II microlensing program is a pathfinder project, which has developed an automated target selection process (RoboTAP) for gravitational microlensing events, which are observed in real time using the Las Cumbres Observatory telescope network.
Aims. Follow-up telescopes typically have a much smaller field of view compared to surveys, therefore the most promising microlensing events must be automatically selected at any given time from an annual sample exceeding 2000 events. The main challenge is to select between events with a high planet detection sensitivity, with the aim of detecting many planets and characterizing planetary anomalies.
Methods. Our target selection algorithm is a hybrid system based on estimates of the planet detection zones around a microlens. It follows automatic anomaly alerts and respects the expected survey coverage of specific events.
Results. We introduce the RoboTAP algorithm, whose purpose is to select and prioritize microlensing events with high sensitivity to planetary companions. In this work, we determine the planet sensitivity of the RoboNet follow-up program and provide a working example of how a broker can be designed for a real-life transient science program conducting follow-up observations in response to alerts; we explore the issues that will confront similar programs being developed for the Large Synoptic Survey Telescope (LSST) and other time domain surveys
- …