16 research outputs found

    Beta cells cannot directly prime diabetogenic CD8 T cells in nonobese diabetic mice

    No full text
    Type 1 diabetes (T1D) is caused by the destruction of insulin-producing islet β cells. CD8 T cells are prevalent in the islets of T1D patients and are the major effectors of β cell destruction in nonobese diabetic (NOD) mice. In addition to their criti

    Congenic analysis of the NKT cell control gene Nkt2 implicates the peroxisomal protein Pxmp41

    No full text
    Type 1 NKT cells play a critical role in controlling the strength and character of adaptive and innate immune responses. We have previously reported deficiencies in the numbers and function of NKT cells in the NOD mouse strain, which is a well-validated model of type 1 diabetes and systemic lupus erythematosus. Genetic control of thymic NKT cell numbers was mapped to two linkage regions: Nkt1 on distal chromosome 1 and Nkt2 on chromosome 2. Herein, we report the production and characterization of a NOD.Nkrp1b.Nkt2bb congenic mouse strain, which has increased thymic and peripheral NKT cells, a decreased incidence of type 1 diabetes, and enhanced cytokine responses in vivo and increased proliferative responses in vitro following challenge with {alpha}-galactosylceramide. The 19 highly differentially expressed candidate genes within the congenic region identified by microarray expression analyses included Pxmp4. This gene encodes a peroxisome-associated integral membrane protein whose only known binding partner is Pex19, an intracellular chaperone and component of the peroxisomal membrane insertion machinery encoded by a candidate for the NKT cell control gene Nkt1. These findings raise the possibility that peroxisomes play a role in modulating glycolipid availability for CD1d presentation, thereby influencing NKT cell function

    Effector CD4<sup>+</sup> T cells recognize intravascular antigen presented by patrolling monocytes

    No full text
    Monocytes constitutively adhere and crawl along the glomerular endothelium and are thought to contribute to glomerulonephritis. Here the authors use multiphoton microscopy to show local antigen presentation by MHCII+ monocytes to T cells in glomerular capillaries of mice

    Smith-specific regulatory T cells halt the progression of lupus nephritis

    No full text
    Abstract Antigen-specific regulatory T cells (Tregs) suppress pathogenic autoreactivity and are potential therapeutic candidates for autoimmune diseases such as systemic lupus erythematosus (SLE). Lupus nephritis is associated with autoreactivity to the Smith (Sm) autoantigen and the human leucocyte antigen (HLA)-DR15 haplotype; hence, we investigated the potential of Sm-specific Tregs (Sm-Tregs) to suppress disease. Here we identify a HLA-DR15 restricted immunodominant Sm T cell epitope using biophysical affinity binding assays, then identify high-affinity Sm-specific T cell receptors (TCRs) using high-throughput single-cell sequencing. Using lentiviral vectors, we transduce our lead Sm-specific TCR into Tregs derived from patients with SLE who are anti-Sm and HLA-DR15 positive. Compared with polyclonal mock-transduced Tregs, Sm-Tregs potently suppress Sm-specific pro-inflammatory responses in vitro and suppress disease progression in a humanized mouse model of lupus nephritis. These results show that Sm-Tregs are a promising therapy for SLE
    corecore