774 research outputs found

    The Early Formation, Evolution and Age of the Neutron-Capture Elements in the Early Galaxy

    Get PDF
    Abundance observations indicate the presence of rapid-neutron capture (i.e., r-process) elements in old Galactic halo and globular cluster stars. These observations demonstrate that the earliest generations of stars in the Galaxy, responsible for neutron-capture synthesis and the progenitors of the halo stars, were rapidly evolving. Abundance comparisons among several halo stars show that the heaviest neutron-capture elements (including Ba and heavier) are consistent with a scaled solar system r-process abundance distribution, while the lighter such elements do not conform to the solar pattern. These comparisons suggest two r-process sites or at least two different sets of astrophysical conditions. The large star-to-star scatter observed in the neutron-capture/iron ratios at low metallicities -- which disappears with increasing [Fe/H] -- suggests an early, chemically unmixed and inhomogeneous Galaxy. The stellar abundances indicate a change from the r-process to the slow neutron capture (i.e., s-) process at higher metallicities in the Galaxy. The detection of thorium in halo and globular cluster stars offers a promising, independent age-dating technique that can put lower limits on the age of the Galaxy.Comment: 6 pages, 3 figures; To appear in the proceedings of the 20th Texas Symposium on Relativistic Astrophysics, J. C. Wheeler & H. Martel (eds.

    Nuclear Chronometers

    Get PDF
    Observations of metal-poor Galactic halo stars indicate that the abundance pattern of the (heaviest) neutron-capture elements is consistent with the scaled solar system r-process abundances. Utilizing the radioactive (r-process) element thorium, age determinations have been made for several of these same stars, placing constraints on both Galactic and cosmological age estimates.Comment: 6 pages, 2 figures. To appear in the Proceedings of ``Cosmic Evolution'

    Galactic Cosmochronometry from Radioactive Elements in the Spectra of Very Old Metal-Poor Stars

    Get PDF
    In a short review of neutron-capture elemental abundances in Galactic halo stars, emphasis is placed on the use of these elements to estimate the age of the Galactic halo. Two prominent characteristics of neutron-capture elements in halo stars are their large star-to-star scatter in the overall abundance level with respect to lighter elements, and the dominance of r-process abundance patterns at lowest stellar metallicities. The r-process abundance signature potentially allows the direct determination of the age of the earliest Galactic halo nucleosynthesis events, but further developments in r-process theory, high resolution spectroscopy of very metal-poor stars, and in basic atomic data are needed to narrow the uncertainties in age estimates. Attention is brought to the importance of accurate transition probabilities in neutron-capture element cosmochronometry. Recent progress in the transition probabilities of rare earth elements is discussed, along with suggestions for future work on other species.Comment: 19 pages, 5 figures; To appear in Physica Script

    Neutron-Capture Element Trends in the Halo

    Full text link
    In a brief review of abundances neutron-capture elements (Z > ~30) in metal-poor halo stars, attention is called to their star-to-star scatter, the dominance of r-process synthesis at lowest metallicities, the puzzle of the lighter members of this element group, and the possibility of a better r-/s-process discriminant.Comment: 6 pages, 2 figures. To appear in the Proceedings of ``Cosmic Evolution'
    • …
    corecore