985 research outputs found

    No anomalous scaling in electrostatic calibrations for Casimir force measurements

    Full text link
    In a recent paper (Phys.Rev.A78, 020101(R) (2008)), Kim at al. have reported a large anomaly in the scaling law of the electrostatic interaction between a sphere and a plate, which was observed during the calibration of their Casimir force set-up. Here we experimentally demonstrate that in proper electrostatic calibrations the scaling law follows the behavior expected from elementary electrostatic arguments, even when the electrostatic voltage that one must apply to minimize the force (typically ascribed to contact potentials) depends on the separation between the surfaces.Comment: Final versio

    Swinburne\u27s Argument For Dualism

    Get PDF

    Melting temperature of screened Wigner crystal on helium films by molecular dynamics

    Full text link
    Using molecular dynamics (MD) simulation, we have calculated the melting temperature of two-dimensional electron systems on 240 240\AA-500 500\AA helium films supported by substrates of dielectric constants ϵs=2.2−11.9 \epsilon_{s}=2.2-11.9 at areal densities nn varying from 3×109 3\times 10^{9} cm−2^{-2} to 1.3×1010 1.3\times 10^{10} cm−2^{-2}. Our results are in good agreement with the available theoretical and experimental results.Comment: 4 pages and 4 figure

    Fiber-diffraction Interferometer using Coherent Fiber Optic Taper

    Full text link
    We present a fiber-diffraction interferometer using a coherent fiber optic taper for optical testing in an uncontrolled environment. We use a coherent fiber optic taper and a single-mode fiber having thermally-expanded core. Part of the measurement wave coming from a test target is condensed through a fiber optic taper and spatially filtered from a single-mode fiber to be reference wave. Vibration of the cavity between the target and the interferometer probe is common to both reference and measurement waves, thus the interference fringe is stabilized in an optical way. Generation of the reference wave is stable even with the target movement. Focus shift of the input measurement wave is desensitized by a coherent fiber optic taper

    Recursive solutions for Laplacian spectra and eigenvectors of a class of growing treelike networks

    Full text link
    The complete knowledge of Laplacian eigenvalues and eigenvectors of complex networks plays an outstanding role in understanding various dynamical processes running on them; however, determining analytically Laplacian eigenvalues and eigenvectors is a theoretical challenge. In this paper, we study the Laplacian spectra and their corresponding eigenvectors of a class of deterministically growing treelike networks. The two interesting quantities are determined through the recurrence relations derived from the structure of the networks. Beginning from the rigorous relations one can obtain the complete eigenvalues and eigenvectors for the networks of arbitrary size. The analytical method opens the way to analytically compute the eigenvalues and eigenvectors of some other deterministic networks, making it possible to accurately calculate their spectral characteristics.Comment: Definitive version accepted for publication in Physical Reivew

    Interaction of vortices in thin superconducting films and Berezinskii-Kosterlitz-Thouless transition

    Full text link
    The precondition for the BKT transition in thin superconducting films, the logarithmic intervortex interaction, is satisfied at distances short relative to Λ=2λ2/d\Lambda=2\lambda^2/d, λ\lambda is the London penetration depth of the bulk material and dd is the film thickness. For this reason, the search for the transition has been conducted in samples of the size L<ΛL<\Lambda. It is argued below that film edges turn the interaction into near exponential (short-range) thus making the BKT transition impossible. If however the substrate is superconducting and separated from the film by an insulated layer, the logarithmic intervortex interaction is recovered and the BKT transition should be observable.Comment: 4 pages, no figure

    Force on a neutral atom near conducting microstructures

    Get PDF
    We derive the non-retarded energy shift of a neutral atom for two different geometries. For an atom close to a cylindrical wire we find an integral representation for the energy shift, give asymptotic expressions, and interpolate numerically. For an atom close to a semi-infinite halfplane we determine the exact Green's function of the Laplace equation and use it derive the exact energy shift for an arbitrary position of the atom. These results can be used to estimate the energy shift of an atom close to etched microstructures that protrude from substrates.Comment: 7 pages, 5 figure

    Modelling background charge rearrangements near single-electron transistors as a Poisson process

    Full text link
    Background charge rearrangements in metallic single-electron transistors are modelled in two-level tunnelling systems as a Poisson process with a scale parameter as only variable. The model explains the recent observation of asymmetric Coulomb blockade peak spacing distributions in metallic single-electron transistors. From the scale parameter we estimate the average size of the tunnelling systems, their density of states, and the height of their energy barrier. We conclude that the observed background charge rearrangements predominantly take place in the substrate of the single-electron transistor.Comment: 7 pages, 2 eps figures, used epl.cls macro include

    Electrostatics of ions inside the nanopores and trans-membrane channels

    Full text link
    A model of a finite cylindrical ion channel through a phospholipid membrane of width LL separating two electrolyte reservoirs is studied. Analytical solution of the Poisson equation is obtained for an arbitrary distribution of ions inside the trans-membrane pore. The solution is asymptotically exact in the limit of large ionic strength of electrolyte on the two sides of membrane. However, even for physiological concentrations of electrolyte, the electrostatic barrier sizes found using the theory are in excellent agreement with the numerical solution of the Poisson equation. The analytical solution is used to calculate the electrostatic potential energy profiles for pores containing charged protein residues. Availability of a semi-exact interionic potential should greatly facilitate the study of ionic transport through nanopores and ion channels

    Electrostatics of Edge States of Quantum Hall Systems with Constrictions: Metal--Insulator Transition Tuned by External Gates

    Full text link
    The nature of a metal--insulator transition tuned by external gates in quantum Hall (QH) systems with point constrictions at integer bulk filling, as reported in recent experiments of Roddaro et al. [1], is addressed. We are particularly concerned here with the insulating behavior--the phenomena of backscattering enhancement induced at high gate voltages. Electrostatics calculations for QH systems with split gates performed here show that observations are not a consequence of interedge interactions near the point contact. We attribute the phenomena of backscattering enhancement to a splitting of the integer edge into conducting and insulating stripes, which enable the occurrence of the more relevant backscattering processes of fractionally charged quasiparticles at the point contact. For the values of the parameters used in the experiments we find that the conducting channels are widely separated by the insulating stripes and that their presence alters significantly the low-energy dynamics of the edges. Interchannel impurity scattering does not influence strongly the tunneling exponents as they are found to be irrelevant processes at low energies. Exponents of backscattering at the point contact are unaffected by interchannel Coulomb interactions since all channels have same chirality of propagation.Comment: 19 pages; To appear in Phys. Rev.
    • …
    corecore