3,975 research outputs found

    Marginally unstable Holmboe modes

    Get PDF
    Marginally unstable Holmboe modes for smooth density and velocity profiles are studied. For a large family of flows and stratification that exhibit Holmboe instability, we show that the modes with phase velocity equal to the maximum or the minimum velocity of the shear are marginally unstable. This allows us to determine the critical value of the control parameter R (expressing the ratio of the velocity variation length scale to the density variation length scale) that Holmboe instability appears R=2. We then examine systems for which the parameter R is very close to this critical value. For this case we derive an analytical expression for the dispersion relation of the complex phase speed c(k) in the unstable region. The growth rate and the width of the region of unstable wave numbers has a very strong (exponential) dependence on the deviation of R from the critical value. Two specific examples are examined and the implications of the results are discussed.Comment: Submitted to Physics of Fluid

    Assessing risk to fresh water resources from long term CO2 injection- laboratory and field studies

    Get PDF
    In developing a site for geologic sequestration, one must assess potential consequences of failure to adequately contain injected carbon dioxide (CO2). Upward migration of CO2 or displacement of saline water because of increased pressure might impact protected water resources 100s to 1000s of meters above a sequestration interval. Questions posed are: (1) Can changes in chemistry of fresh water aquifers provide evidence of CO2 leakage from deep injection/sequestration reservoirs containing brine and or hydrocarbons? (2) What parameters can we use to assess potential impacts to water quality? (3) If CO2 leakage to freshwater aquifers occurs, will groundwater quality be degraded and if so, over what time period? Modeling and reaction experiments plus known occurrences of naturally CO2-charged potable water show that the common chemical reaction products from dissolution of CO2 into freshwater include rapid buffering of acidity by dissolution of calcite and slower equilibrium by reaction with clays and feldspars. Results from a series of laboratory batch reactions of CO2 with diverse aquifer rocks show geochemical response within hours to days after introduction of CO2. Results included decreased pH and increased concentrations of cations in CO2 experimental runs relative to control runs using argon (Ar). Some cation (Ba, Ca, Fe, Mg, Mn, and Sr) concentrations increased over and an order of magnitude during CO2 runs. Results are aquifer dependant in that experimental vessels containing different aquifer rocks showed different magnitudes of increase in cation concentrations. Field studies designed to improve understanding of risk to fresh water are underway in the vicinity of (1) SACROC oilfield in Scurry County, Texas, USA where CO2 has been injected for enhanced oil recovery (EOR) since 1972 and (2) the Cranfield unit in Adams County, Mississippi, USA where CO2 EOR is currently underway. Both field studies are funded by the U.S. Department of Energy (DOE) regional carbon sequestration partnership programs and industrial sponsors. Preliminary results of groundwater monitoring are currently available for the SACROC field study where researchers investigated 68 water wells and one spring during five field excursions between June 2006 and July 2008. Results to date show no trend of preferential degradation below drinking water standards in areas of CO2 injection (inside SACROC) as compared to areas outside of the SACROC oil field.Bureau of Economic Geolog

    Hubble Space Telescope Ultraviolet Imaging and High-Resolution Spectroscopy of Water Photodissociation Products in Comet Hyakutake (C/1996 B2)

    Get PDF
    Comet Hyakutake (C/1996 B2) provided a target of opportunity for performing a systematic study of water photodissociation products in which we obtained data from three instruments on the Hubble Space Telescope (HST). The HST Goddard High Resolution Spectrograph (GHRS) was used to measure the line profile of hydrogen Lyα (H Lyα) at six locations around the coma of the comet, ranging from the nucleus to a displacement of 100,000 km, and covering different directions compared with the comet-sun line. GHRS yielded line profiles with a spectral resolution (FWHM ~4 km s^(-1)) that was a factor of 2-3 better than any previous H Lyα or Hα ground-based measurements. The Wide Field Planetary Camera 2 (WFPC2) and the Woods filter were used to obtain H Lyα images of the inner coma. The faint object spectrograph (FOS) was used to determine the OH production rate and monitor its variation throughout the HST observing sequence. The GHRS H Lyα line profiles show the behavior of a line profile that is optically thick in the core for positions near the nucleus (<5000 km) and gradually becoming more optically thin at larger displacements and lower column abundances. A composite H Lyα image constructed from four separate WFPC2 exposures is consistent with the relative fluxes seen in GHRS observations and clearly shows the dayside enhancement of a solar illuminated optically thick coma. These data were analyzed self-consistently to test our understanding of the detailed physics and chemistry of the expanding coma and our ability to obtain accurate water production rates from remote observations of gaseous hydrogen (H) and hydroxyl (OH), the major water dissociation products. Our hybrid kinetic/hydrodynamic model of the coma combined with a spherical radiative transfer calculation is able to account for (1) the velocity distribution of H atoms, (2) the spatial distribution of the H Lyα emission in the inner coma, and (3) the absolute intensities of H and OH emissions, giving a water production rate of (2.6 ± 0.4) × 10^(29) s^(-1) on 1996 April 4

    Local ocean response to a multiphase westerly wind burst: 1. Dynamic response

    Get PDF
    The dynamic response to a westerly wind burst which occurred during the Coupled Ocean Atmosphere Response Experiment in the warm pool of the equatorial Pacific Ocean is described using velocity, hydrography, and microstructure measurements. Turbulent fluxes distributed momentum input from the wind over a near‐surface layer of variable thickness. Coriolis and pressure gradient terms combined to induce a wavelike response whose frequency was close to the local inertial frequency. Wind stress variations on near‐inertial timescales interfered both constructively and destructively with the wave response, exerting considerable influence on the observed currents

    The nature of iron-oxygen vacancy defect centers in PbTiO3

    Full text link
    The iron(III) center in ferroelectric PbTiO3 together with an oxygen vacancy forms a charged defect associate, oriented along the crystallographic c-axis. Its microscopic structure has been analyzed in detail comparing results from a semi-empirical Newman superposition model analysis based on finestructure data and from calculations using density functional theory. Both methods give evidence for a substitution of Fe3+ for Ti4+ as an acceptor center. The position of the iron ion in the ferroelectric phase is found to be similar to the B-site in the paraelectric phase. Partial charge compensation is locally provided by a directly coordinated oxygen vacancy. Using high-resolution synchrotron powder diffraction, it was verified that lead titanate remains tetragonal down to 12 K, exhibiting a c/a-ratio of 1.0721.Comment: 11 pages, 5 figures, accepted in Phys. Rev.

    In-loop squeezing is real squeezing to an in-loop atom

    Full text link
    Electro-optical feedback can produce an in-loop photocurrent with arbitrarily low noise. This is not regarded as evidence of `real' squeezing because squeezed light cannot be extracted from the loop using a linear beam splitter. Here I show that illuminating an atom (which is a nonlinear optical element) with `in-loop' squeezed light causes line-narrowing of one quadrature of the atom's fluorescence. This has long been regarded as an effect which can only be produced by squeezing. Experiments on atoms using in-loop squeezing should be much easier than those with conventional sources of squeezed light.Comment: 4 pages, 2 figures, submitted to PR

    Surface potential at a ferroelectric grain due to asymmetric screening of depolarization fields

    Get PDF
    Nonlinear screening of electric depolarization fields, generated by a stripe domain structure in a ferroelectric grain of a polycrystalline material, is studied within a semiconductor model of ferroelectrics. It is shown that the maximum strength of local depolarization fields is rather determined by the electronic band gap than by the spontaneous polarization magnitude. Furthermore, field screening due to electronic band bending and due to presence of intrinsic defects leads to asymmetric space charge regions near the grain boundary, which produce an effective dipole layer at the surface of the grain. This results in the formation of a potential difference between the grain surface and its interior of the order of 1 V, which can be of either sign depending on defect transition levels and concentrations. Exemplary acceptor doping of BaTiO3 is shown to allow tuning of the said surface potential in the region between 0.1 and 1.3 V.Comment: 14 pages, 11 figures, submitted to J. Appl. Phy
    corecore