636 research outputs found

    A Method of Developing Analytical Multipartite Delocalization Measures for Mixed W-like States

    Full text link
    We present a method of developing analytical measures of kk-partite delocalization in arbitrary nn-body W-like states, otherwise known as mixed states in the single excitation subspace. These measures calculate the distance of a state to its closest reference state with k1k-1 entanglement. We find that the reference state is determined by the purity of the state undergoing measurement. Measures with up to 6-body delocalization for a 6-body system are derived in full, while an algorithm for general kk-partite measures is given.Comment: 8 pages, 3 figure

    Tracking Cryptic SARS-CoV-2 Lineages Detected in NYC Wastewater

    Get PDF
    Tracking SARS-CoV-2 genetic diversity is strongly indicated because diversifying selection may lead to the emergence of novel variants resistant to naturally acquired or vaccine-induced immunity. To monitor New York City (NYC) for the presence of novel variants, we deep sequence most of the receptor binding domain coding sequence of the S protein of SARS-CoV-2 isolated from the New York City wastewater. Here we report detecting increasing frequencies of novel cryptic SARS-CoV-2 lineages not recognized in GISAID’s EpiCoV database. These lineages contain mutations that had been rarely observed in clinical samples, including Q493K, Q498Y, E484A, and T572N and share many mutations with the Omicron variant of concern. Some of these mutations expand the tropism of SARS-CoV-2 pseudoviruses by allowing infection of cells expressing the human, mouse, or rat ACE2 receptor. Finally, pseudoviruses containing the spike amino acid sequence of these lineages were resistant to different classes of receptor binding domain neutralizing monoclonal antibodies. We offer several hypotheses for the anomalous presence of these lineages, including the possibility that these lineages are derived from unsampled human COVID-19 infections or that they indicate the presence of a non-human animal reservoir

    A subaltern critical geopolitics of the war on terror: postcolonial security in Tanzania

    Get PDF
    Currently, hegemonic geographical imaginations are dominated by the affective geopolitics of the War on Terror, and related security practice is universalised into what has been called ‘‘globalized fear’’ (Pain, 2009). Critical approaches to geopolitics have been attentive to the Westerncentric nature of this imaginary, however, studies of non-Western perceptions of current geopolitics and the nature of fear will help to further displace dominant geopolitical imaginations. Africa, for example, is a continent that is often captured in Western geopolitics – as a site of failed states, the coming anarchy, passive recipient of aid, and so on – but geopolitical representations originating in Africa rarely make much of an impact on political theory. This paper aims to add to critical work on the so-called War on Terror from a perspective emerging from the margins of the dominant geopolitical imagination. It considers the geopolitical imagination of the War on Terror from a non-Western source, newspapers in Tanzania

    Large-scale distributions of tropospheric nitric, formic, and acetic acids over the western Pacific basin during wintertime

    Get PDF
    We report here measurements of the acidic gases nitric (HNO3), formic (HCOOH), and acetic (CH3COOH) over the western Pacific basin during the February-March 1994 Pacific Exploratory Mission-West (PEM-West B). These data were obtained aboard the NASA DC-8 research aircraft as it flew missions in the altitude range of 0.3–12.5 km over equatorial regions near Guam and then further westward encompassing the entire Pacific Rim arc. Aged marine air over the equatorial Pacific generally exhibited mixing ratios of acidic gases \u3c100 parts per trillion by volume (pptv). Near the Asian continent, discrete plumes encountered below 6 km altitude contained up to 8 parts per billion by volume (ppbv) HNO3 and 10 ppbv HCOOH and CH3COOH. Overall there was a general correlation between mixing ratios of acidic gases with those of CO, C2H2, and C2Cl4, indicative of emissions from combustion and industrial sources. The latitudinal distributions of HNO3 and CO showed that the largest mixing ratios were centered around 15°N, while HCOOH, CH3COOH, and C2Cl4 peaked at 25°N. The mixing ratios of HCOOH and CH3COOH were highly correlated (r2 = 0.87) below 6 km altitude, with a slope (0.89) characteristic of the nongrowing season at midlatitudes in the northern hemisphere. Above 6 km altitude, HCOOH and CH3COOH were marginally correlated (r2 = 0.50), and plumes well defined by CO, C2H2, and C2Cl4 were depleted in acidic gases, most likely due to scavenging during vertical transport of air masses through convective cloud systems over the Asian continent. In stratospheric air masses, HNO3 mixing ratios were several parts per billion by volume (ppbv), yielding relationships with O3 and N2O consistent with those previously reported for NOy

    Characterizing the shape of the lumbar spine using an active shape model: reliability and precision of the method

    Get PDF
    Copyright © 2008 Lippincott, Williams & WilkinsThis is a non-final version of an article published in final form in Spine Vol. 33 (7), pp. 807-813 (2008)Study Design. Analysis of positional magnetic resonance images of normal volunteers. Objective. To compare the reliability and precision of an active shape model to that of conventional lordosis measurements. Summary of Background Data. Characterization of lumbar lordosis commonly relies on measurement of angles; these have been found to have errors of around 10[degrees]. Methods. T2 weighted sagittal images of the lumbar spines of 24 male volunteers in the standing posture were acquired using a positional magnetic resonance scanner. An active shape model of the vertebral bodies from S1 to L1 was created. Lumbar lordosis was also determined by measuring the angles of the superior endplates. All measurements were performed twice by one observer and once by a second observer. Results. The shape model identified 2 modes of variation to describe the shape of the lumbar spine (mode 1 described curvature and mode 2 described evenness of curvature). Significant correlations were found between mode 1 and total lordosis (R = 0.97, P < 0.001) and between mode 2 and mean absolute deviation of segmental lordosis (R = 0.80, P < 0.001). Intra- and interobserver reliability was higher for the shape model (intraclass correlation coefficients, 0.98-1.00) than for the lordosis angle measurements (intraclass correlation coefficients, 0.68-0.99). The relative error of the shape model (mode 1 = 4%; mode 2 = 9%) was lower than the conventional measurements (total lordosis = 10%). Conclusion. The shape of the lumbar spine in the sagittal plane can be comprehensively characterized using a shape model. The results are more reliable and precise than measurements of lordosis calculated from endplate angles

    Infection programs sustained lymphoid stromal cell responses and shapes lymph node remodeling upon secondary challenge

    Get PDF
    Published: January 10, 2017Lymph nodes (LNs) are constructed of intricate networks of endothelial and mesenchymal stromal cells. How these lymphoid stromal cells (LSCs) regulate lymphoid tissue remodeling and contribute to immune responses remains poorly understood. We performed a comprehensive functional and transcriptional analysis of LSC responses to skin viral infection and found that LSC subsets responded robustly, with different kinetics for distinct pathogens. Recruitment of cells to inflamed LNs induced LSC expansion, while B cells sustained stromal responses in an antigen-independent manner. Infection induced rapid transcriptional responses in LSCs. This transcriptional program was transient, returning to homeostasis within 1 month of infection, yet expanded fibroblastic reticular cell networks persisted for more than 3 months after infection, and this altered LN composition reduced the magnitude of LSC responses to subsequent heterologous infection. Our results reveal the complexity of LSC responses during infection and suggest that amplified networks of LN stromal cells support successive immune responses.Julia L. Gregory, Anne Walter, Yannick O. Alexandre, Jyh Liang Hor, Ruijie Liu, Joel Z. Ma, Sapna Devi, Nobuko Tokuda, Yuji Owada, Laura K. Mackay, Gordon K. Smyth, William R. Heath, and Scott N. Muelle
    corecore