5 research outputs found

    Magnetothermoelectric transport in modulated and unmodulated graphene

    Full text link
    We draw motivation from recent experimental studies and present a comprehensive study of magnetothermoelectric transport in a graphene monolayer within the linear response regime. We employ the modified Kubo formalism developed for thermal transport in a magnetic field. Thermopower as well as thermal conductivity as a function of the gate voltage of a graphene monolayer in the presence of a magnetic field perpendicular to the graphene plane is determined for low magnetic fields (~1 Tesla) as well as high fields (~8 Tesla). We include the effects of screened charged impurities on thermal transport. We find good, qualitative as well as quantitative, agreement with recent experimental work on the subject. In addition, in order to analyze the effects of modulation, which can be induced by various means, on the thermal transport in graphene, we evaluate the thermal transport coefficients for a graphene monolayer subjected to a periodic electric modulation in a magnetic field. The results are presented as a function of the magnetic field and the gate voltage.Comment: 14 pages, 8 figure

    Thermopower of a two-dimensional antidot lattice

    No full text
    corecore