1,348 research outputs found

    Search For Unresolved Sources In The COBE-DMR Two-Year Sky Maps

    Full text link
    We have searched the temperature maps from the COBE Differential Microwave Radiometers (DMR) first two years of data for evidence of unresolved sources. The high-latitude sky (|b| > 30\deg) contains no sources brighter than 192 uK thermodynamic temperature (322 Jy at 53 GHz). The cumulative count of sources brighter than threshold T, N(> T), is consistent with a superposition of instrument noise plus a scale-invariant spectrum of cosmic temperature fluctuations normalized to Qrms-PS = 17 uK. We examine the temperature maps toward nearby clusters and find no evidence for any Sunyaev-Zel'dovich effect, \Delta y < 7.3 x 10^{-6} (95% CL) averaged over the DMR beam. We examine the temperature maps near the brightest expected radio sources and detect no evidence of significant emission. The lack of bright unresolved sources in the DMR maps, taken with anisotropy measurements on smaller angular scales, places a weak constraint on the integral number density of any unresolved Planck-spectrum sources brighter than flux density S, n(> S) < 2 x 10^4 (S/1 Jy)^{-2} sr^{-1}.Comment: 16 pages including 2 figures, uuencoded PostScript, COBE preprint 94-0

    Power Spectrum Estimators For Large CMB Datasets

    Get PDF
    Forthcoming high-resolution observations of the Cosmic Microwave Background (CMB) radiation will generate datasets many orders of magnitude larger than have been obtained to date. The size and complexity of such datasets presents a very serious challenge to analysing them with existing or anticipated computers. Here we present an investigation of the currently favored algorithm for obtaining the power spectrum from a sky-temperature map --- the quadratic estimator. We show that, whilst improving on direct evaluation of the likelihood function, current implementations still inherently scale as the equivalent of the cube of the number of pixels or worse, and demonstrate the critical importance of choosing the right implementation for a particular dataset.Comment: 8 pages LATEX, no figures, corrected misaligned columns in table

    Angular Power Spectrum of the Microwave Background Anisotropy seen by the COBE Differential Microwave Radiometer

    Get PDF
    The angular power spectrum estimator developed by Peebles (1973) and Hauser & Peebles (1973) has been modified and applied to the 4 year maps produced by the COBE DMR. The power spectrum of the observed sky has been compared to the power spectra of a large number of simulated random skies produced with noise equal to the observed noise and primordial density fluctuation power spectra of power law form, with P(k)knP(k) \propto k^n. The best fitting value of the spectral index in the range of spatial scales corresponding to spherical harmonic indices 3303 \leq \ell \lesssim 30 is an apparent spectral index nappn_{app} = 1.13 (+0.3) (-0.4) which is consistent with the Harrison-Zel'dovich primordial spectral index npri=1n_{pri} = 1 The best fitting amplitude for napp=1n_{app} = 1 is QRMS20.5\langle Q_{RMS}^2\rangle^{0.5} = 18 uK.Comment: 17 pages including 3 PostScript figures. Submitted to The Astrophysical Journal (Letters

    2-Point Correlations in the COBE DMR 4-Year Anisotropy Maps

    Get PDF
    The 2-point temperature correlation function is evaluated from the 4-year COBE DMR microwave anisotropy maps. We examine the 2-point function, which is the Legendre transform of the angular power spectrum, and show that the data are statistically consistent from channel to channel and frequency to frequency. The most likely quadrupole normalization is computed for a scale-invariant power-law spectrum of CMB anisotropy, using a variety of data combinations. For a given data set, the normalization inferred from the 2-point data is consistent with that inferred by other methods. The smallest and largest normalization deduced from any data combination are 16.4 and 19.6 uK respectively, with a value ~18 uK generally preferred.Comment: Sumbitted to ApJ Letter

    Power Spectrum of Primordial Inhomogeneity Determined from the 4-Year COBE DMR Sky Maps

    Get PDF
    Fourier analysis and power spectrum estimation of the cosmic microwave background anisotropy on an incompletely sampled sky developed by Gorski (1994) has been applied to the high-latitude portion of the 4-year COBE DMR 31.5, 53 and 90 GHz sky maps. Likelihood analysis using newly constructed Galaxy cuts (extended beyond |b| = 20deg to excise the known foreground emission) and simultaneously correcting for the faint high latitude galactic foreground emission is conducted on the DMR sky maps pixelized in both ecliptic and galactic coordinates. The Bayesian power spectrum estimation from the foreground corrected 4-year COBE DMR data renders n ~ 1.2 +/- 0.3, and Q_{rms-PS} ~ 15.3^{+3.7}_{-2.8} microK (projections of the two-parameter likelihood). These results are consistent with the Harrison-Zel'dovich n=1 model of amplitude Q_{rms-PS} ~ 18 microK detected with significance exceeding 14sigma (dQ/Q < 0.07). (A small power spectrum amplitude drop below the published 2-year results is predominantly due to the application of the new, extended Galaxy cuts.)Comment: 9 pages of text in LaTeX, 1 postscript Table, 4 postscript figures (2 color plates), submitted to The Astrophysical Journal (Letters

    Signal-to-Noise Eigenmode Analysis of the Two-Year COBE Maps

    Full text link
    To test a theory of cosmic microwave background fluctuations, it is natural to expand an anisotropy map in an uncorrelated basis of linear combinations of pixel amplitudes --- statistically-independent for both the noise and the signal. These S/NS/N-eigenmodes are indispensible for rapid Bayesian analyses of anisotropy experiments, applied here to the recently-released two-year COBE {\it dmr} maps and the {\it firs} map. A 2-parameter model with an overall band-power and a spectral tilt νΔT\nu_{\Delta T} describes well inflation-based theories. The band-powers for {\it all} the {\it dmr} 53,90,3153,90,31 aa+bb GHz and {\it firs} 170 GHz maps agree, {(1.1±0.1)×105}1/2\{(1.1\pm 0.1)\times 10^{-5}\}^{1/2}, and are largely independent of tilt and degree of (sharp) S/NS/N-filtering. Further, after optimal S/NS/N-filtering, the {\it dmr} maps reveal the same tilt-independent large scale features and correlation function. The unfiltered {\it dmr} 5353 aa+bb index νΔT+1\nu_{\Delta T}+1 is 1.4±0.41.4\pm 0.4; increasing the S/NS/N-filtering gives a broad region at (1.0--1.2)±\pm0.5, a jump to (1.4--1.6)±\pm0.5, then a drop to 0.8, the higher values clearly seen to be driven by S/NS/N-power spectrum data points that do not fit single-tilt models. These indices are nicely compatible with inflation values (\sim0.8--1.2), but not overwhelmingly so.Comment: submitted to Phys.Rev.Letters, 4 pages, uuencoded compressed PostScript; also bdmr2.ps.Z, via anonymous ftp to ftp.cita.utoronto.ca, cd to /pub/dick/yukawa; CITA-94-2

    ASYMPTOTIC BEHAVIOR OF COMPLEX SCALAR FIELDS IN A FRIEDMAN-LEMAITRE UNIVERSE

    Full text link
    We study the coupled Einstein-Klein-Gordon equations for a complex scalar field with and without a quartic self-interaction in a curvatureless Friedman-Lema\^{\i}\-tre Universe. The equations can be written as a set of four coupled first order non-linear differential equations, for which we establish the phase portrait for the time evolution of the scalar field. To that purpose we find the singular points of the differential equations lying in the finite region and at infinity of the phase space and study the corresponding asymptotic behavior of the solutions. This knowledge is of relevance, since it provides the initial conditions which are needed to solve numerically the differential equations. For some singular points lying at infinity we recover the expected emergence of an inflationary stage.Comment: uuencoded, compressed tarfile containing a 15 pages Latex file and 2 postscipt figures. Accepted for publication on Phys. Rev.

    Natural Inflation From Fermion Loops

    Full text link
    ``Natural'' inflationary theories are a class of models in which inflation is driven by a pseudo-Nambu-Goldstone boson. In this paper we consider two models, one old and one new, in which the potential for inflation is generated by loop effects from a fermion sector which explicitly breaks a global U(1)U(1) symmetry. In both models, we retrieve the ``standard'' natural inflation potential, V(θ)=Λ4[1+cos(θ/μ)]V\left(\theta\right) = \Lambda^4\left[1 + \cos\left(\theta / \mu\right)\right], as a limiting case of the exact one-loop potential, but we carry out a general analysis of the models including the limiting case. Constraints from the COBE DMR observation and from theoretical consistency are used to limit the parameters of the models, and successful inflation occurs without the necessity of fine-tuning the parameters.Comment: (Revised) 15 pages, LaTeX (revTeX), 8 figures in uuencoded PostScript format. Version accepted for publication in Phys. Rev. D 15. Corrected definition of power spectrum and added three reference
    corecore