253 research outputs found

    Classical signature of quantum annealing

    Get PDF
    A pair of recent articles concluded that the D-Wave One machine actually operates in the quantum regime, rather than performing some classical evolution. Here we give a classical model that leads to the same behaviors used in those works to infer quantum effects. Thus, the evidence presented does not demonstrate the presence of quantum effects.Comment: 8 pages, 3 pdf figure

    Trading classical and quantum computational resources

    Full text link
    We propose examples of a hybrid quantum-classical simulation where a classical computer assisted by a small quantum processor can efficiently simulate a larger quantum system. First we consider sparse quantum circuits such that each qubit participates in O(1) two-qubit gates. It is shown that any sparse circuit on n+k qubits can be simulated by sparse circuits on n qubits and a classical processing that takes time 2O(k)poly(n)2^{O(k)} poly(n). Secondly, we study Pauli-based computation (PBC) where allowed operations are non-destructive eigenvalue measurements of n-qubit Pauli operators. The computation begins by initializing each qubit in the so-called magic state. This model is known to be equivalent to the universal quantum computer. We show that any PBC on n+k qubits can be simulated by PBCs on n qubits and a classical processing that takes time 2O(k)poly(n)2^{O(k)} poly(n). Finally, we propose a purely classical algorithm that can simulate a PBC on n qubits in a time 2cnpoly(n)2^{c n} poly(n) where cβ‰ˆ0.94c\approx 0.94. This improves upon the brute-force simulation method which takes time 2npoly(n)2^n poly(n). Our algorithm exploits the fact that n-fold tensor products of magic states admit a low-rank decomposition into n-qubit stabilizer states.Comment: 14 pages, 4 figure

    The quantum capacity with symmetric side channels

    Get PDF
    We present an upper bound for the quantum channel capacity that is both additive and convex. Our bound can be interpreted as the capacity of a channel for high-fidelity quantum communication when assisted by a family of channels that have no capacity on their own. This family of assistance channels, which we call symmetric side channels, consists of all channels mapping symmetrically to their output and environment. The bound seems to be quite tight, and for degradable quantum channels it coincides with the unassisted channel capacity. Using this symmetric side channel capacity, we find new upper bounds on the capacity of the depolarizing channel. We also briefly indicate an analogous notion for distilling entanglement using the same class of (one-way) channels, yielding one of the few entanglement measures that is monotonic under local operations with one-way classical communication (1-LOCC), but not under the more general class of local operations with classical communication (LOCC).Comment: 10 pages, 4 figure
    • …
    corecore