24 research outputs found

    A Phase I study of the angiogenesis inhibitor SU5416 (semaxanib) in solid tumours, incorporating dynamic contrast MR pharmacodynamic end points

    Get PDF
    SU5416 (Z-3-[(2,4-dimethylpyrrol-5-yl)methylidenyl]-2-indolinone; semaxanib) is a small molecule inhibitor of the vascular endothelial growth factor receptor (VEGFR)2. A Phase I dose escalation study was performed. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was used as a pharmacodynamic assessment tool. In all, 27 patients were recruited. SU5416 was administered twice weekly by fixed rate intravenous infusion. Patients were treated in sequential cohorts of three patients at 48, 65, 85 110 and 145 mg m−2. A further dose level of 190 mg m−2 after a 2-week lead in period at a lower dose was completed; thereafter, the cohort at 145 mg m−2 was expanded. SU5416 showed linear pharmacokinetics to 145 mg m−2 with a large volume of distribution and rapid clearance. A significant degree of interpatient variability was seen. SU5416 was well tolerated, by definition a maximum-tolerated dose was not defined. No reproducible changes were seen in DCE-MRI end points. Serial assessments of VEGF in a cohort of patients treated at 145 mg m−2 did not show a statistically significant treatment-related change. Parallel assessments of the impact of SU5416 on coagulation profiles in six patients showed a transient effect within the fibrinolytic pathway. Clinical experience showed that patients who had breaks of therapy longer than a week could not have treatment reinitiated at a dose of 190 mg m−2 without unacceptable toxicity. The 145 mg m−2 dose level is thus the recommended dose for future study

    Normalization of the Lymph Node T Cell Stromal Microenvironment in lpr/lpr Mice Is Associated with SU5416-Induced Reduction in Autoantibodies

    Get PDF
    The vascular-stromal elements of lymph nodes can play important roles in regulating the activities of the lymphocytes within. During model immune responses, the vascular-stromal compartment has been shown to undergo proliferative expansion and functional alterations. The state of the vascular-stromal compartment and the potential importance of this compartment in a spontaneous, chronic model of autoimmunity have not been well studied. Here, we characterize the vascular expansion in MRL-lpr/lpr lymph nodes and attempt to ask whether inhibiting this expansion can interfere with autoantibody generation. We show that characteristics of vascular expansion in enlarging MRL-lpr/lpr lymph nodes resemble that of the VEGF-dependent expansion that occurs in wild-type mice after model immunization. Surprisingly, treatment with SU5416, an inhibitor of VEGF and other receptor tyrosine kinases, did not have sustained effects in inhibiting vascular growth, but attenuated the anti-dsDNA response and altered the phenotype of the double negative T cells that are expanded in these mice. In examining for anatomic correlates of these immunologic changes, we found that the double negative T cells are localized within ectopic follicles around a central B cell patch and that these T cell-rich areas lack the T zone stromal protein ER-TR7 as well as other elements of a normal T zone microenvironment. SU5416 treatment disrupted these follicles and normalized the association between T zone microenvironmental elements and T cell-rich areas. Recent studies have shown a regulatory role for T zone stromal elements. Thus, our findings of the association of anti-dsDNA responses, double negative T cell phenotype, and altered lymphocyte microenvironment suggest the possibility that lymphocyte localization in ectopic follicles protects them from regulation by T zone stromal elements and functions to maintain autoimmune responses. Potentially, altering the lymphocyte microenvironment that is set up by the vascular-stromal compartment can be a means by which to control undesired autoimmune responses
    corecore