1,042 research outputs found
Modelling of the diffusion of carbon dioxide in polyimide matrices by computer simulation
Computer aided molecular modelling is used to visualize the motion of CO2 gas molecules inside a polyimide polymer matrix. The polymers simulated are two 6FDA-bases polyimides, 6FDA-4PDA and 6FDA-44ODA. These polymers have also been synthesized in our laboratory, and thus the simulated properties could directly be compared with “real-world” data. The simulation experiments have been performed using the GROMOS1 package. The polymer boxes were created using the soft-core method, with short (11 segments) chains. This results in highly relaxed and totally amorphous polyimide matrices. The motion of randomly placed CO2 molecules in the boxes during molecular dynamics runs was followed, revealing three types of motion: jumping, continuous- and trapped motion. The calculated diffusivities are unrealistic, but possible shortcomings in our model are given
Cyclodehydration reaction of polyhydrazides. III. Influence of the sample history
The influence of preparation history upon the thermal cyclodehydration reaction of polyhydrazide samples has been investigated. Solid polyhydrazide samples were prepared from DMSO solutions using the phase-inversion technique. Significant differences in conversion rates were observed between samples prepared by nonsolvent immersion precipitation and by evaporation of solvent. It appeared that contact with the nonsolvent water during the sample preparation process has considerable influence on the conversion rate. Not only does the immersion in and washing with water lead to a better removal of the solvent also the pH of the water determines the rate of conversion. A distinct change in the conversion rate is found for washing water at a pH of 7. Basic washing solutions showing lower conversion rates than acid ones. A mechanism explaining these phenomena is proposed
Onderzoek voeding paarden in Frankrijk
Aanleiding voor het bezoek was de mogelijke invoering van eenzelfde energie- en eiwitwaarderingssysteem voor paarden in Nederland
Regulatory T cells as a possible new target in epilepsy?
Epilepsy is a complex chronic brain disorder with diverse clinical features that can be caused by various triggering events, such as infections, head trauma, or stroke. During epileptogenesis, various abnormalities are observed, such as altered cellular homeostasis, imbalance of neurotransmitters, tissue changes, and the release of inflammatory mediators, which in combination lead to spontaneous recurrent seizures. Regulatory T cells (Tregs), a subtype of CD4+Foxp3+ T cells, best known for their key function in immune suppression, also seem to play a role in attenuating neurodegeneration and suppressing pathological inflammation in several brain disease states. Considering that epilepsy is also highly associated with neuronal damage and neuroinflammation, modulation of Tregs may be an interesting way to modify the disease course of epilepsy and needs further investigation. In this review, we will describe the currently available information on Tregs in epilepsy
Leaf-applied sodium chloride promotes cadmium accumulation in durum wheat grain
Cadmium (Cd) accumulation in durum wheat grain is a growing concern. Among the factors affecting Cd accumulation in plants, soil chloride (Cl) concentration plays a critical role. The effect of leaf NaCl application on grain Cd was studied in greenhouse-grown durum wheat (Triticum turgidum L. durum, cv. Balcali-2000) by immersing (10 s) intact flag leaves into Cd and/or NaCl-containing solutions for 14 times during heading and dough stages. Immersing flag leaves in solutions containing increasing amount of Cd resulted in substantial increases in grain Cd concentration. Adding NaCl alone or in combination with the Cd-containing immersion solution promoted accumulation of Cd in the grains, by up to 41%. In contrast, Zn concentrations of grains were not affected or even decreased by the NaCl treatments. This is likely due to the effect of Cl complexing Cd and reducing positive charge on the metal ion, an effect that is much smaller for Zn. Charge reduction or removal (CdCl2 0 species) would increase the diffusivity/lipophilicity of Cd and enhance its capability to penetrate the leaf epidermis and across membranes. Of even more significance to human health was the ability of Cl alone to penetrate leaf tissue and mobilize and enhance shoot Cd transfer to grains, yet reducing or not affecting Zn transfer
BiCMOS high-performance ICs : from DC to mm-wave
Progress with silicon and silicon germanium (SiGe) based BiCMOS technologies over the past few years has been very impressive. This enables the implementation of traditional microwave and emerging mm-wave applications in silicon. The paper gives an overview of several high-performance ICs that have been implemented in a state-of-the-art BiCMOS technology (QUBiC4). Examples of high-performance ICs are described ranging from basic building blocks for mobile applications to highly integrated receiver and transmitter ICs for applications up to the mm-wave range
Annual Report of the Town Officers of the Town of Alfred Maine For the Year Ending February 15, 1913
A novel dielectric resonator antenna (DRA), working at 28 GHz with a peak gain of 12.4 dBi over a fractional bandwidth of 12.6%, is presented. The novel design achieves side-lobe levels below -10 dB for both the E and H-planes so to meet the requirements of the new generation 5G wireless communications systems
Closed-form Jones matrix of dual-polarized inverted-vee dipole antennas over lossy ground
This paper presents a closed-form expression for the Jones matrix of a dual-polarized inverted-vee dipole antenna based on the Lorentz reciprocity theorem and the basic rules of electromagnetic refraction. The expression is used to determine the intrinsic cross-polarization ratio (IXR) as a function of droop angle, position of the source in the sky, antenna height, frequency, and reflection coefficient of the underlying ground. The expression is verified using full-wave simulations with a method-of-moments solver, showing very good agreement. It explains the increase in the IXR when the antenna is placed over a perfect electric ground plane. This result is used to explain the polarization properties of the Square Kilometre Array Log-periodic Antenna. Through the LOw-Frequency ARray Low-Band Antenna (LOFAR-LBA), the importance of the size of the ground plane is explained. Finally, design consideration for high polarization purity antennas is discussed
- …